Suppr超能文献

小鼠身体活动性状的上位遗传基础。

An epistatic genetic basis for physical activity traits in mice.

作者信息

Leamy Larry J, Pomp Daniel, Lightfoot J Timothy

机构信息

Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.

出版信息

J Hered. 2008 Nov-Dec;99(6):639-46. doi: 10.1093/jhered/esn045. Epub 2008 Jun 5.

Abstract

We recently identified several (4-8) quantitative trait loci (QTL) for 3 physical activity traits (daily distance, duration, and speed voluntarily run) in an F(2) population of mice derived from an original intercross of 2 strains that exhibited large differences in activity. These QTL cumulatively explained from 11% to 34% of the variation in these traits, but this was considerably less than their total genetic variability estimated from differences among inbred strains. We therefore decided to test whether epistatic interactions might account for additional genetic variation in these traits in this same population of mice. We conducted a full genome epistasis scan for all possible interactions of QTL between each pair of 20 chromosomes. The results of this scan revealed an abundance of epistasis, with QTL throughout the genome being involved in significant interactions. Overall, epistatic effects contributed an average of 26% of the total variation among the 3 activity traits. These results suggest that epistatic interactions of genes may play as important a role in the genetic architecture of physical activity traits as single-locus effects and need to be considered in future candidate gene identification studies.

摘要

我们最近在一个由两个活动水平差异很大的品系杂交产生的F2小鼠群体中,鉴定出了几个(4 - 8个)与3种身体活动性状(每日跑动距离、持续时间和自发跑动速度)相关的数量性状基因座(QTL)。这些QTL累计解释了这些性状中11%至34%的变异,但这远低于根据近交系之间的差异估计的总遗传变异性。因此,我们决定测试上位性相互作用是否可能解释同一小鼠群体中这些性状的额外遗传变异。我们对20条染色体中每对染色体之间QTL的所有可能相互作用进行了全基因组上位性扫描。扫描结果显示存在大量上位性,全基因组的QTL都参与了显著的相互作用。总体而言,上位性效应平均占3种活动性状总变异的26%。这些结果表明,基因的上位性相互作用在身体活动性状的遗传结构中可能与单基因座效应发挥同样重要的作用,并且在未来的候选基因鉴定研究中需要加以考虑。

相似文献

1
An epistatic genetic basis for physical activity traits in mice.
J Hered. 2008 Nov-Dec;99(6):639-46. doi: 10.1093/jhered/esn045. Epub 2008 Jun 5.
2
Epistatic interactions of genes influence within-individual variation of physical activity traits in mice.
Genetica. 2011 Jun;139(6):813-21. doi: 10.1007/s10709-011-9586-9. Epub 2011 Jun 11.
3
4
Quantitative trait loci for physical activity traits in mice.
Physiol Genomics. 2008 Feb 19;32(3):401-8. doi: 10.1152/physiolgenomics.00241.2007. Epub 2008 Jan 2.
7
High throughput analyses of epistasis for swine body dimensions and organ weights.
Anim Genet. 2011 Feb;42(1):15-21. doi: 10.1111/j.1365-2052.2010.02082.x.
8
Genetic variation for body weight change in mice in response to physical exercise.
BMC Genet. 2009 Sep 21;10:58. doi: 10.1186/1471-2156-10-58.
9
Simultaneous mapping of epistatic QTL in DU6i x DBA/2 mice.
Mamm Genome. 2005 Jul;16(7):481-94. doi: 10.1007/s00335-004-2425-4.

引用本文的文献

1
Can a Hybrid Line Break a Selection Limit on Behavioral Evolution in Mice?
Behav Genet. 2025 Jan;55(1):43-58. doi: 10.1007/s10519-024-10209-7. Epub 2024 Dec 5.
2
Detection of epistasis between ACTN3 and SNAP-25 with an insight towards gymnastic aptitude identification.
PLoS One. 2020 Aug 31;15(8):e0237808. doi: 10.1371/journal.pone.0237808. eCollection 2020.
3
Effects of varying doses of estrogen and caudal pressure on wheel running in orchidectomized male mice.
Physiol Rep. 2018 Jun;6(11):e13730. doi: 10.14814/phy2.13730. Epub 2018 Jun 4.
4
Biological/Genetic Regulation of Physical Activity Level: Consensus from GenBioPAC.
Med Sci Sports Exerc. 2018 Apr;50(4):863-873. doi: 10.1249/MSS.0000000000001499.
5
Discovering Genetic Interactions in Large-Scale Association Studies by Stage-wise Likelihood Ratio Tests.
PLoS Genet. 2015 Sep 24;11(9):e1005502. doi: 10.1371/journal.pgen.1005502. eCollection 2015 Sep.
6
Bayesian analysis of additive epistasis arising from new mutations in mice.
Genet Res (Camb). 2014 Aug 13;96:e008. doi: 10.1017/S001667231400010X.
7
Effects of Supraphysiological Doses of Sex Steroids on Wheel Running Activity in Mice.
J Steroids Horm Sci. 2012 Nov 1;3(2):110. doi: 10.4172/2157-7536.1000110.
9
Differential gene expression in high- and low-active inbred mice.
Biomed Res Int. 2014;2014:361048. doi: 10.1155/2014/361048. Epub 2014 Jan 16.
10
Differential skeletal muscle proteome of high- and low-active mice.
J Appl Physiol (1985). 2014 Apr 15;116(8):1057-67. doi: 10.1152/japplphysiol.00911.2013. Epub 2014 Feb 6.

本文引用的文献

2
PLEIOTROPIC EFFECTS OF INDIVIDUAL GENE LOCI ON MANDIBULAR MORPHOLOGY.
Evolution. 1997 Dec;51(6):2006-2016. doi: 10.1111/j.1558-5646.1997.tb05122.x.
3
Quantitative trait loci for physical activity traits in mice.
Physiol Genomics. 2008 Feb 19;32(3):401-8. doi: 10.1152/physiolgenomics.00241.2007. Epub 2008 Jan 2.
5
6
QTL-based evidence for the role of epistasis in evolution.
Genet Res. 2005 Oct;86(2):89-95. doi: 10.1017/S0016672305007780.
7
8
An epistatic genetic basis for fluctuating asymmetry of tooth size and shape in mice.
Heredity (Edinb). 2005 Mar;94(3):316-25. doi: 10.1038/sj.hdy.6800637.
9
The Mouse Genome Database (MGD): from genes to mice--a community resource for mouse biology.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D471-5. doi: 10.1093/nar/gki113.
10
Genetic influence on daily wheel running activity level.
Physiol Genomics. 2004 Nov 17;19(3):270-6. doi: 10.1152/physiolgenomics.00125.2004. Epub 2004 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验