Suppr超能文献

统计检验的功效。不显著意味着什么?

The power of a statistical test. What does insignificance mean?

作者信息

Markel M D

机构信息

Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison 53706.

出版信息

Vet Surg. 1991 May-Jun;20(3):209-14. doi: 10.1111/j.1532-950x.1991.tb00336.x.

Abstract

In statistical testing of data, the p value is a standard measure for reporting quantitative results. When a significant difference is reported, (e.g., P less than .05), most readers understand that there is less than a 5% chance that the authors have made a type I error (false positive or alpha) with their conclusion. In contrast, when nonsignificant differences between treatments, groups, or parameters of interest are reported (e.g., P greater than .05), many investigators and readers incorrectly interpret the 95% confidence interval for this conclusion as a 95% chance of making the correct decision. In fact, the alpha level of significance (in this example, .05) is only one of the parameters that determines the probability of committing a type II error (false negative or beta) when concluding statistical insignificance. Statistical power is the probability of having made a correct decision when the statistical tests reveal insignificance (P greater than .05) and the null hypothesis is true. The higher the power, the greater the chance that the decision is correct. Power depends on the alpha level of significance, the sample size, the standard deviation of the population or the sample, and the magnitude of the difference the investigators are trying to demonstrate.

摘要

在数据的统计检验中,p值是报告定量结果的标准度量。当报告有显著差异时(例如,P小于0.05),大多数读者明白作者得出的结论出现I型错误(假阳性或α错误)的概率小于5%。相比之下,当报告治疗、组或感兴趣参数之间无显著差异时(例如,P大于0.05),许多研究者和读者错误地将此结论的95%置信区间理解为做出正确决策的概率为95%。实际上,显著性水平α(在此例中为0.05)只是在得出统计无显著性结论时决定犯II型错误(假阴性或β错误)概率的参数之一。统计效能是当统计检验显示无显著性(P大于0.05)且原假设为真时做出正确决策的概率。效能越高,决策正确的机会就越大。效能取决于显著性水平α、样本量、总体或样本的标准差以及研究者试图证明的差异大小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验