Suppr超能文献

主要易化子超家族反向转运蛋白的来龙去脉

Ins and outs of major facilitator superfamily antiporters.

作者信息

Law Christopher J, Maloney Peter C, Wang Da-Neng

机构信息

The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.

出版信息

Annu Rev Microbiol. 2008;62:289-305. doi: 10.1146/annurev.micro.61.080706.093329.

Abstract

The major facilitator superfamily (MFS) represents the largest group of secondary active membrane transporters, and its members transport a diverse range of substrates. Recent work shows that MFS antiporters, and perhaps all members of the MFS, share the same three-dimensional structure, consisting of two domains that surround a substrate translocation pore. The advent of crystal structures of three MFS antiporters sheds light on their fundamental mechanism; they operate via a single binding site, alternating-access mechanism that involves a rocker-switch type movement of the two halves of the protein. In the sn-glycerol-3-phosphate transporter (GlpT) from Escherichia coli, the substrate-binding site is formed by several charged residues and a histidine that can be protonated. Salt-bridge formation and breakage are involved in the conformational changes of the protein during transport. In this review, we attempt to give an account of a set of mechanistic principles that characterize all MFS antiporters.

摘要

主要易化子超家族(MFS)是第二大类主动膜转运蛋白,其成员可转运多种底物。最近的研究表明,MFS反向转运体,可能还有MFS的所有成员,都具有相同的三维结构,由围绕底物转运孔的两个结构域组成。三种MFS反向转运体晶体结构的出现揭示了它们的基本机制;它们通过单一结合位点、交替访问机制进行运作,该机制涉及蛋白质两半部分的摇杆开关式运动。在大肠杆菌的sn-甘油-3-磷酸转运体(GlpT)中,底物结合位点由几个带电荷的残基和一个可质子化的组氨酸形成。盐桥的形成和断裂参与了转运过程中蛋白质的构象变化。在这篇综述中,我们试图阐述一组表征所有MFS反向转运体的机制原理。

相似文献

1
Ins and outs of major facilitator superfamily antiporters.
Annu Rev Microbiol. 2008;62:289-305. doi: 10.1146/annurev.micro.61.080706.093329.
3
Ins and Outs of Rocker Switch Mechanism in Major Facilitator Superfamily of Transporters.
Membranes (Basel). 2023 Apr 25;13(5):462. doi: 10.3390/membranes13050462.
4
Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli.
Science. 2003 Aug 1;301(5633):616-20. doi: 10.1126/science.1087619.
5
Two proton translocation pathways in a secondary active multidrug transporter.
J Mol Microbiol Biotechnol. 2007;12(3-4):197-209. doi: 10.1159/000099641.
6
Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT.
J Mol Biol. 2008 May 9;378(4):828-39. doi: 10.1016/j.jmb.2008.03.029. Epub 2008 Mar 19.
8
Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.
J Bioinform Comput Biol. 2008 Oct;6(5):885-904. doi: 10.1142/s0219720008003801.
9
Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli.
J Electron Microsc (Tokyo). 2005;54 Suppl 1:i43-6. doi: 10.1093/jmicro/54.suppl_1.i43.

引用本文的文献

3
Variation at the major facilitator superfamily gene influences zinc concentration of barley grain.
Front Plant Sci. 2025 Apr 24;16:1539029. doi: 10.3389/fpls.2025.1539029. eCollection 2025.
4
Impact of exporter proteins and their engineering on the productivity of Corynebacterium.
Appl Microbiol Biotechnol. 2025 Apr 22;109(1):98. doi: 10.1007/s00253-025-13479-1.
5
-a novel zinc finger transcription factor involved in azole resistance.
Mycology. 2024 Apr 23;16(1):266-279. doi: 10.1080/21501203.2024.2342521. eCollection 2025.
6
Structure and mechanism of the plastid/parasite ATP/ADP translocator.
Nature. 2025 May;641(8063):797-804. doi: 10.1038/s41586-025-08743-3. Epub 2025 Mar 12.
7
Fission yeast cells deficient in siderophore biosynthesis require Str2 for ferrichrome-dependent growth.
Front Microbiol. 2025 Feb 6;16:1527727. doi: 10.3389/fmicb.2025.1527727. eCollection 2025.
8
Wolbachia enhances the survival of Drosophila infected with fungal pathogens.
BMC Biol. 2025 Feb 11;23(1):42. doi: 10.1186/s12915-025-02130-0.
10
Mfsd2a suppresses colorectal cancer progression and liver metastasis via the S100A14/STAT3 axis.
J Transl Med. 2025 Jan 13;23(1):59. doi: 10.1186/s12967-024-05994-y.

本文引用的文献

1
Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT.
J Mol Biol. 2008 May 9;378(4):828-39. doi: 10.1016/j.jmb.2008.03.029. Epub 2008 Mar 19.
2
Sugar binding induces an outward facing conformation of LacY.
Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16504-9. doi: 10.1073/pnas.0708258104. Epub 2007 Oct 9.
3
Hydrogen-bonding and packing features of membrane proteins: functional implications.
Biophys J. 2008 Mar 15;94(6):1945-53. doi: 10.1529/biophysj.107.110395. Epub 2007 Oct 5.
4
Kinetic evidence is consistent with the rocker-switch mechanism of membrane transport by GlpT.
Biochemistry. 2007 Oct 30;46(43):12190-7. doi: 10.1021/bi701383g. Epub 2007 Oct 4.
5
Structural determination of wild-type lactose permease.
Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15294-8. doi: 10.1073/pnas.0707688104. Epub 2007 Sep 19.
6
Eukaryotic major facilitator superfamily transporter modeling based on the prokaryotic GlpT crystal structure.
Mol Membr Biol. 2007 Sep-Dec;24(5-6):333-41. doi: 10.1080/09687680701496507.
7
Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes.
J Mol Microbiol Biotechnol. 2007;12(3-4):165-79. doi: 10.1159/000099639.
8
Single-molecule FRET reveals sugar-induced conformational dynamics in LacY.
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12640-5. doi: 10.1073/pnas.0700969104. Epub 2007 May 14.
9
Electrostatic couplings in OmpA ion-channel gating suggest a mechanism for pore opening.
Nat Chem Biol. 2006 Nov;2(11):627-35. doi: 10.1038/nchembio827. Epub 2006 Oct 15.
10
A three-dimensional model of human organic anion transporter 1: aromatic amino acids required for substrate transport.
J Biol Chem. 2006 Dec 8;281(49):38071-9. doi: 10.1074/jbc.M608834200. Epub 2006 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验