Rahimi F, Shanmugam A, Bitan G
Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-7334, USA.
Curr Alzheimer Res. 2008 Jun;5(3):319-41. doi: 10.2174/156720508784533358.
Several neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's and prion diseases, are characterized pathognomonically by the presence of intra- and/or extracellular lesions containing proteinaceous aggregates, and by extensive neuronal loss in selective brain regions. Related non-neuropathic systemic diseases, e.g., light-chain and senile systemic amyloidoses, and other organ-specific diseases, such as dialysis-related amyloidosis and type-2 diabetes mellitus, also are characterized by deposition of aberrantly folded, insoluble proteins. It is debated whether the hallmark pathologic lesions are causative. Substantial evidence suggests that these aggregates are the end state of aberrant protein folding whereas the actual culprits likely are transient, pre-fibrillar assemblies preceding the aggregates. In the context of neurodegenerative amyloidoses, the proteinaceous aggregates may eventuate as potentially neuroprotective sinks for the neurotoxic, oligomeric protein assemblies. The pre-fibrillar, oligomeric assemblies are believed to initiate the pathogenic mechanisms that lead to synaptic dysfunction, neuronal loss, and disease-specific regional brain atrophy. The amyloid beta-protein (Abeta), which is believed to cause Alzheimer's disease (AD), is considered an archetypal amyloidogenic protein. Intense studies have led to nominal, functional, and structural descriptions of oligomeric Abeta assemblies. However, the dynamic and metastable nature of Abeta oligomers renders their study difficult. Different results generated using different methodologies under different experimental settings further complicate this complex area of research and identification of the exact pathogenic assemblies in vivo seems daunting. Here we review structural, functional, and biological experiments used to produce and study pre-fibrillar Abeta assemblies, and highlight similar studies of proteins involved in related diseases. We discuss challenges that contemporary researchers are facing and future research prospects in this demanding yet highly important field.
包括阿尔茨海默病、帕金森病、亨廷顿病和朊病毒病在内的几种神经退行性疾病,其病理特征为存在含有蛋白质聚集体的细胞内和/或细胞外病变,以及在选择性脑区出现广泛的神经元丢失。相关的非神经病变性全身性疾病,如轻链和老年全身性淀粉样变性,以及其他器官特异性疾病,如透析相关淀粉样变性和2型糖尿病,也以异常折叠的不溶性蛋白质沉积为特征。标志性病理病变是否具有致病性仍存在争议。大量证据表明,这些聚集体是异常蛋白质折叠的终末状态,而实际的罪魁祸首可能是聚集体之前的瞬时、原纤维前组装体。在神经退行性淀粉样变性的背景下,蛋白质聚集体可能最终成为神经毒性寡聚蛋白质组装体的潜在神经保护汇。原纤维前的寡聚组装体被认为启动了导致突触功能障碍、神经元丢失和疾病特异性脑区萎缩的致病机制。被认为导致阿尔茨海默病(AD)的淀粉样β蛋白(Aβ)被视为典型的淀粉样蛋白生成蛋白。深入研究已经对寡聚Aβ组装体进行了名义上、功能上和结构上的描述。然而,Aβ寡聚体的动态和亚稳态性质使其研究困难。在不同实验条件下使用不同方法产生的不同结果,进一步使这个复杂的研究领域复杂化,并且在体内鉴定确切的致病组装体似乎令人生畏。在这里,我们综述了用于产生和研究原纤维前Aβ组装体的结构、功能和生物学实验,并强调了对相关疾病中涉及的蛋白质的类似研究。我们讨论了当代研究人员面临的挑战以及这个要求苛刻但非常重要的领域的未来研究前景。