Fornasiero Francesco, Park Hyung Gyu, Holt Jason K, Stadermann Michael, Grigoropoulos Costas P, Noy Aleksandr, Bakajin Olgica
Chemistry Materials Earth and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17250-5. doi: 10.1073/pnas.0710437105. Epub 2008 Jun 6.
Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important.
生物孔道调节着多种溶质的细胞运输,通常具有高选择性和快速流速。这些孔道具有几个共同的结构特征:孔道的内表面常常排列着疏水残基,且选择性过滤区域通常含有带电荷的官能团。疏水性、窄直径的碳纳米管可以通过在一个更简单、更稳定的平台上重现这些关键特征,从而提供一种膜通道的简化模型。先前的研究表明,碳纳米管孔道能够支持与天然水通道蛋白通道相当的水通量。在此,我们使用一个亚2纳米的、排列有序的碳纳米管膜纳米流体平台来研究离子通过这些孔道的运输。为了模拟选择性区域的带电基团,我们通过等离子体处理在碳纳米管的开口处引入带负电荷的基团。压力驱动过滤实验,结合对渗透物和进料的毛细管电泳分析,用于量化这些膜中离子排斥作用与溶液离子强度、pH值和离子价态的函数关系。我们表明,碳纳米管膜表现出显著的离子排斥作用,在某些条件下可高达98%。我们的结果有力地支持了一种唐南型截留机制,该机制主要由固定膜电荷与移动离子之间的静电相互作用主导,而空间位阻和流体动力学效应似乎不太重要。