Suppr超能文献

亚2纳米碳纳米管孔隙对离子的排斥作用。

Ion exclusion by sub-2-nm carbon nanotube pores.

作者信息

Fornasiero Francesco, Park Hyung Gyu, Holt Jason K, Stadermann Michael, Grigoropoulos Costas P, Noy Aleksandr, Bakajin Olgica

机构信息

Chemistry Materials Earth and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17250-5. doi: 10.1073/pnas.0710437105. Epub 2008 Jun 6.

Abstract

Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important.

摘要

生物孔道调节着多种溶质的细胞运输,通常具有高选择性和快速流速。这些孔道具有几个共同的结构特征:孔道的内表面常常排列着疏水残基,且选择性过滤区域通常含有带电荷的官能团。疏水性、窄直径的碳纳米管可以通过在一个更简单、更稳定的平台上重现这些关键特征,从而提供一种膜通道的简化模型。先前的研究表明,碳纳米管孔道能够支持与天然水通道蛋白通道相当的水通量。在此,我们使用一个亚2纳米的、排列有序的碳纳米管膜纳米流体平台来研究离子通过这些孔道的运输。为了模拟选择性区域的带电基团,我们通过等离子体处理在碳纳米管的开口处引入带负电荷的基团。压力驱动过滤实验,结合对渗透物和进料的毛细管电泳分析,用于量化这些膜中离子排斥作用与溶液离子强度、pH值和离子价态的函数关系。我们表明,碳纳米管膜表现出显著的离子排斥作用,在某些条件下可高达98%。我们的结果有力地支持了一种唐南型截留机制,该机制主要由固定膜电荷与移动离子之间的静电相互作用主导,而空间位阻和流体动力学效应似乎不太重要。

相似文献

1
Ion exclusion by sub-2-nm carbon nanotube pores.亚2纳米碳纳米管孔隙对离子的排斥作用。
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17250-5. doi: 10.1073/pnas.0710437105. Epub 2008 Jun 6.
2
Intrinsic ion selectivity of narrow hydrophobic pores.狭窄疏水孔的固有离子选择性
J Phys Chem B. 2009 May 28;113(21):7642-9. doi: 10.1021/jp810102u.
5
Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels.单壁碳纳米管:生物离子通道的模拟物
Nano Lett. 2017 Feb 8;17(2):1204-1211. doi: 10.1021/acs.nanolett.6b04967. Epub 2017 Jan 19.
7
Voltage gated carbon nanotube membranes.电压门控碳纳米管膜
Langmuir. 2007 Jul 31;23(16):8624-31. doi: 10.1021/la700686k. Epub 2007 Jul 7.

引用本文的文献

4
Scalable Synthesis of Carbon Nanomembranes from Amorphous Molecular Layers.由非晶分子层可扩展合成碳纳米膜。
ACS Appl Mater Interfaces. 2023 Aug 30;15(34):41101-41108. doi: 10.1021/acsami.3c07369. Epub 2023 Aug 16.
7
Fluids and Electrolytes under Confinement in Single-Digit Nanopores.受限于个位数纳米孔中的流体和电解质。
Chem Rev. 2023 Mar 22;123(6):2737-2831. doi: 10.1021/acs.chemrev.2c00155. Epub 2023 Mar 10.
10
The mixture effect on ionic selectivity and permeability of nanotubes.混合物对纳米管离子选择性和渗透性的影响。
Nanoscale Adv. 2020 Apr 21;2(9):3834-3840. doi: 10.1039/d0na00089b. eCollection 2020 Sep 16.

本文引用的文献

1
Why are carbon nanotubes fast transporters of water?为什么碳纳米管是水的快速传输体?
Nano Lett. 2008 Feb;8(2):452-8. doi: 10.1021/nl072385q. Epub 2008 Jan 12.
2
Designing carbon nanotube membranes for efficient water desalination.设计用于高效海水淡化的碳纳米管膜。
J Phys Chem B. 2008 Feb 7;112(5):1427-34. doi: 10.1021/jp709845u. Epub 2007 Dec 29.
3
Voltage gated carbon nanotube membranes.电压门控碳纳米管膜
Langmuir. 2007 Jul 31;23(16):8624-31. doi: 10.1021/la700686k. Epub 2007 Jul 7.
4
Tailoring wettability change on aligned and patterned carbon nanotube films for selective assembly.
J Phys Chem B. 2007 Feb 22;111(7):1672-8. doi: 10.1021/jp066781t. Epub 2007 Feb 1.
6
Ion permeation dynamics in carbon nanotubes.碳纳米管中的离子渗透动力学
J Chem Phys. 2006 Aug 28;125(8):084713. doi: 10.1063/1.2337289.
7
Slow release of molecules in self-assembling peptide nanofiber scaffold.分子在自组装肽纳米纤维支架中的缓慢释放。
J Control Release. 2006 Sep 28;115(1):18-25. doi: 10.1016/j.jconrel.2006.06.031. Epub 2006 Jul 8.
9
Salt permeation and exclusion in hydroxylated and functionalized silica pores.
Phys Rev Lett. 2006 Mar 10;96(9):095504. doi: 10.1103/PhysRevLett.96.095504. Epub 2006 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验