Suppr超能文献

[预测多发性硬化症复发的分子生物标志物]

[Molecular biomarkers for prediction of multiple sclerosis relapse].

作者信息

Satoh Jun-ichi

机构信息

Department of Bioinformatics, Meiji Pharmaceutical University.

出版信息

Nihon Rinsho. 2008 Jun;66(6):1103-11.

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system white matter mediated by an autoimmune process, whose development is triggered by a complex interplay of multiple genetic, infectious and environmental factors. MS is characterized by the relapsing-remitting clinical course. At present, molecular mechanisms underlying MS relapse remain unknown. If they are well clarified, we could predict the timing of relapses and start the earliest therapeutic and preventive interventions. DNA microarray is a novel technology that allows us to systematically monitor the expression of whole human genome in disease-affected tissues and cells. By using DNA microarray, we have recently studied gene expression profile of peripheral blood T cells isolated from clinically active MS patients and healthy controls, and from MS patients in relapse and during remission. We found a set of differentially expressed genes between MS and healthy subjects, and between acute relapse and complete remission. Hierarchical clustering analysis of the discriminator genes established classification of MS subgroups that exhibit distinct gene expression profiles and relapse-specific molecular signatures. By using KeyMolnet, a novel data-mining tool of bioinformatics, we identified the principal molecular network involved in development of MS and induction of acute relapse. Thus, DNA microarray technology is highly valuable to identify molecular mechanism-based biomarkers for classification of MS subgroups and prediction of MS relapse.

摘要

多发性硬化症(MS)是一种由自身免疫过程介导的中枢神经系统白质炎性脱髓鞘疾病,其发病是由多种遗传、感染和环境因素的复杂相互作用引发的。MS的临床病程特点为复发-缓解型。目前,MS复发的分子机制尚不清楚。如果能充分阐明这些机制,我们就能预测复发时间,并尽早开始治疗和预防干预。DNA微阵列是一项新技术,它使我们能够系统地监测疾病受累组织和细胞中整个人类基因组的表达情况。通过使用DNA微阵列,我们最近研究了从临床活动期MS患者、健康对照、复发期MS患者和缓解期MS患者中分离出的外周血T细胞的基因表达谱。我们发现了MS患者与健康受试者之间,以及急性复发期与完全缓解期之间的一组差异表达基因。对鉴别基因进行层次聚类分析,建立了MS亚组的分类,这些亚组表现出不同的基因表达谱和复发特异性分子特征。通过使用生物信息学的新型数据挖掘工具KeyMolnet,我们确定了参与MS发病和急性复发诱导的主要分子网络。因此,DNA微阵列技术对于识别基于分子机制的生物标志物以用于MS亚组分类和MS复发预测具有很高的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验