Suppr超能文献

动态荧光显微镜图像中多目标跟踪的粒子滤波:在微管生长分析中的应用

Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: application to microtubule growth analysis.

作者信息

Smal Ihor, Draegestein Katharina, Galjart Niels, Niessen Wiro, Meijering Erik

机构信息

Department of Medical Informatics, Erasmus MC-University Medical Center Rotterdam, P. O. Box 2040, 3000 CA Rotterdam, The Netherlands.

出版信息

IEEE Trans Med Imaging. 2008 Jun;27(6):789-804. doi: 10.1109/TMI.2008.916964.

Abstract

Quantitative analysis of dynamic processes in living cells by means of fluorescence microscopy imaging requires tracking of hundreds of bright spots in noisy image sequences. Deterministic approaches, which use object detection prior to tracking, perform poorly in the case of noisy image data. We propose an improved, completely automatic tracker, built within a Bayesian probabilistic framework. It better exploits spatiotemporal information and prior knowledge than common approaches, yielding more robust tracking also in cases of photobleaching and object interaction. The tracking method was evaluated using simulated but realistic image sequences, for which ground truth was available. The results of these experiments show that the method is more accurate and robust than popular tracking methods. In addition, validation experiments were conducted with real fluorescence microscopy image data acquired for microtubule growth analysis. These demonstrate that the method yields results that are in good agreement with manual tracking performed by expert cell biologists. Our findings suggest that the method may replace laborious manual procedures.

摘要

通过荧光显微镜成像对活细胞中的动态过程进行定量分析,需要在有噪声的图像序列中追踪数百个亮点。确定性方法在追踪之前使用目标检测,在有噪声的图像数据情况下表现不佳。我们提出了一种改进的、完全自动的追踪器,它构建在贝叶斯概率框架内。与常见方法相比,它能更好地利用时空信息和先验知识,在光漂白和目标相互作用的情况下也能产生更稳健的追踪效果。使用具有真实情况的模拟图像序列对追踪方法进行了评估。这些实验结果表明,该方法比流行的追踪方法更准确、更稳健。此外,还使用为微管生长分析采集的真实荧光显微镜图像数据进行了验证实验。这些实验表明,该方法产生的结果与细胞生物学专家手动追踪的结果高度一致。我们的研究结果表明,该方法可能会取代费力的手动操作程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验