Suppr超能文献

用粒子追踪测量的能量景观中的误差。

Errors in Energy Landscapes Measured with Particle Tracking.

机构信息

Department of Engineering, University of Cambridge, Cambridge, United Kingdom.

Department of Engineering, University of Cambridge, Cambridge, United Kingdom.

出版信息

Biophys J. 2018 Jul 3;115(1):139-149. doi: 10.1016/j.bpj.2018.05.035.

Abstract

Tracking Brownian particles is often employed to map the energy landscape they explore. Such measurements have been exploited to study many biological processes and interactions in soft materials. Yet video tracking is irremediably contaminated by localization errors originating from two imaging artifacts: the "static" errors come from signal noise, and the "dynamic" errors arise from the motion blur due to finite frame-acquisition time. We show that these errors result in systematic and nontrivial biases in the measured energy landscapes. We derive a relationship between the true and the measured potential that elucidates, among other aberrations, the presence of false double-well minima in the apparent potentials reported in recent studies. We further assess several canonical trapping and pair-interaction potentials by using our analytically derived results and Brownian dynamics simulations. In particular, we show that the apparent spring stiffness of harmonic potentials (such as optical traps) is increased by dynamic errors but decreased by static errors. Our formula allows for the development of efficient corrections schemes, and we also present in this work a provisional method for reconstructing true potentials from the measured ones.

摘要

追踪布朗粒子常被用于绘制它们所探索的能量景观。此类测量方法已被用于研究软物质中的许多生物过程和相互作用。然而,视频追踪不可避免地受到两种成像伪影引起的定位误差的污染:“静态”误差源于信号噪声,而“动态”误差则源于由于有限的帧采集时间导致的运动模糊。我们表明,这些误差会导致测量的能量景观中存在系统且非平凡的偏差。我们推导出了真实势能和测量势能之间的关系,该关系除了其他偏差之外,还阐明了在最近的研究中报告的明显势能中存在虚假的双峰最小值。我们进一步使用我们的分析推导结果和布朗动力学模拟来评估几个典型的捕获和对相互作用势能。特别是,我们表明,动态误差会增加谐波势(如光阱)的表观弹簧刚度,但会减小静态误差。我们的公式允许开发有效的校正方案,我们还在本文中提出了一种从测量势能重建真实势能的暂定方法。

相似文献

4
Static and dynamic errors in particle tracking microrheology.粒子追踪微流变学中的静态和动态误差。
Biophys J. 2005 Jan;88(1):623-38. doi: 10.1529/biophysj.104.042457. Epub 2004 Nov 8.
7
Swarms with canonical active Brownian motion.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051105. doi: 10.1103/PhysRevE.83.051105. Epub 2011 May 4.
8
Extended Kramers-Moyal analysis applied to optical trapping.应用于光镊的扩展克拉默斯-莫亚尔分析
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 2):026702. doi: 10.1103/PhysRevE.86.026702. Epub 2012 Aug 1.

本文引用的文献

1
4
Optimizing experimental parameters for tracking of diffusing particles.优化用于追踪扩散粒子的实验参数。
Phys Rev E. 2016 Aug;94(2-1):022401. doi: 10.1103/PhysRevE.94.022401. Epub 2016 Aug 2.
6
Advances in the microrheology of complex fluids.复杂流体的微流变学进展。
Rep Prog Phys. 2016 Jul;79(7):074601. doi: 10.1088/0034-4885/79/7/074601. Epub 2016 Jun 1.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验