Suppr超能文献

Immobilized enzymes: electrokinetic effects on reaction rates in a porous medium.

作者信息

Ruckenstein E, Kalthod D G

机构信息

State University of New York at Buffalo, Department of Chemical Engineering, Amherst, New York 14260, USA.

出版信息

Biotechnol Bioeng. 1982 Nov;24(11):2357-82. doi: 10.1002/bit.260241106.

Abstract

The effect of the internal diffusion and electrical surface charge on the overall rate of a reaction catalyzed by an enzyme immobilized on a porous medium are examined. Effectiveness factors have been calculated which compare the global reaction rate to that existing in the absence of the internal diffusion and/or the electrical field. The surface charge, assumed to arise from the dissociation equilibria of the acidic and basic surface groups of the enzyme, generates an electrical double layer at the pore surface. The double-layer potential is governed by the Poisson-Boltzmann equation. It is shown that the diffusion potential can be characterized by a modulus which depends upon the surface reaction rate, the charges and diffusivities of the substrate and products, the ionic strength, and the pore dimensions. The flux of a charged species in the pore occurs under the influences of the concentration gradient and the electrical potential gradient. The governing equations are solved by an iterative numerical method. The effects of pH, enzyme concentration, and substrate concentration on the rates of two different hydrolysis reactions catalyzed by immobilized papain are examined. The release of H(+) in one of the reactions causes the lowering of internal pH, and also a constancy of the internal pH when the external pH in creases beyond a certain value. The latter reaction also shows a maximum in the reaction rate with respect to enzyme concentration. The reaction not involving H(+) as a product shows a maximum in the reaction rate with respect to external pH, but a monotonic increase in the reaction rate as the enzyme concentration increases.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验