Al-Hashimi Hashim M, Walter Nils G
Department of Chemistry and Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, United States.
Curr Opin Struct Biol. 2008 Jun;18(3):321-9. doi: 10.1016/j.sbi.2008.04.004. Epub 2008 Jun 9.
Many recently discovered RNA functions rely on highly complex multistep conformational transitions that occur in response to an array of cellular signals. These dynamics accompany and guide, for example, RNA cotranscriptional folding, ligand sensing and signaling, site-specific catalysis in ribozymes, and the hierarchically ordered assembly of ribonucleoproteins. RNA dynamics are encoded by both the inherent properties of RNA structure, spanning many motional modes with a large range of amplitudes and timescales, and external trigger factors, ranging from proteins, nucleic acids, metal ions, metabolites, and vitamins to temperature and even directional RNA biosynthesis itself. Here, we review recent advances in our understanding of RNA dynamics as highlighted by biophysical tools.
许多最近发现的RNA功能依赖于高度复杂的多步构象转变,这些转变是对一系列细胞信号作出的响应。例如,这些动态变化伴随着并指导RNA共转录折叠、配体传感和信号传导、核酶中的位点特异性催化以及核糖核蛋白的分层有序组装。RNA动态变化由RNA结构的固有特性编码,涵盖具有大范围振幅和时间尺度的多种运动模式,以及外部触发因素,包括蛋白质、核酸、金属离子、代谢物、维生素、温度,甚至定向RNA生物合成本身。在这里,我们回顾了生物物理工具所凸显的我们对RNA动态变化理解的最新进展。