Karlsson Rose-Marie, Tanaka Kohichi, Heilig Markus, Holmes Andrew
Laboratory for Clinical and Translational Studies, National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Bethesda, Maryland 20892, USA.
Biol Psychiatry. 2008 Nov 1;64(9):810-4. doi: 10.1016/j.biopsych.2008.05.001. Epub 2008 Jun 12.
Recent data suggest that excessive glutamatergic signaling in the prefrontal cortex may contribute to the pathophysiology of schizophrenia and that promoting presynaptic glutamate modulation via group II metabotropic glutamate 2/3 (mGlu2/3) receptor activation can exert antipsychotic efficacy. The glial glutamate and aspartate transporter (GLAST) (excitatory amino acid transporter 1 [EAAT1]) regulates extracellular glutamate levels via uptake into glia, but the consequences of GLAST dysfunction for schizophrenia are largely unknown.
We examined GLAST knockout mice (KO) for behaviors thought to model positive symptoms in schizophrenia (locomotor hyperactivity to novelty, exaggerated locomotor response to N-methyl-d-aspartate receptor [NMDAR] antagonism) and the ability of haloperidol and the mGlu2/3 agonist LY379268 to normalize novelty-induced hyperactivity.
Glial glutamate and aspartate transporter KO consistently showed locomotor hyperactivity to a novel but not familiar environment, relative to wild-type (WT) mice. The locomotor hyperactivity-inducing effects of the NMDAR antagonist MK-801 was exaggerated in GLAST KO relative to WT. Treatment with haloperidol or LY379268 normalized novelty-induced locomotor hyperactivity in GLAST KO.
Schizophrenia-related abnormalities in GLAST KO raise the possibility that loss of GLAST-mediated glutamate clearance could be a pathophysiological risk factor for the disease. Our findings provide novel support for the hypothesis that glutamate dysregulation contributes to the pathophysiology of schizophrenia and for the antipsychotic potential of mGlu2/3 agonists.
近期数据表明,前额叶皮质中过度的谷氨酸能信号传导可能导致精神分裂症的病理生理学变化,并且通过激活II型代谢型谷氨酸2/3(mGlu2/3)受体促进突触前谷氨酸调节可发挥抗精神病作用。胶质谷氨酸和天冬氨酸转运体(GLAST,即兴奋性氨基酸转运体1 [EAAT1])通过摄取到胶质细胞中来调节细胞外谷氨酸水平,但GLAST功能障碍对精神分裂症的影响在很大程度上尚不清楚。
我们检测了GLAST基因敲除小鼠(KO),观察其是否具有被认为可模拟精神分裂症阳性症状的行为(对新环境的运动亢进、对N-甲基-D-天冬氨酸受体 [NMDAR] 拮抗剂的夸张运动反应),以及氟哌啶醇和mGlu2/3激动剂LY379268使新环境诱导的运动亢进恢复正常的能力。
相对于野生型(WT)小鼠,胶质谷氨酸和天冬氨酸转运体基因敲除小鼠在新环境而非熟悉环境中持续表现出运动亢进。相对于WT小鼠,GLAST基因敲除小鼠中NMDAR拮抗剂MK-801诱导运动亢进的作用更为夸张。用氟哌啶醇或LY379268治疗可使GLAST基因敲除小鼠中由新环境诱导的运动亢进恢复正常。
GLAST基因敲除小鼠中与精神分裂症相关的异常情况增加了一种可能性,即GLAST介导的谷氨酸清除功能丧失可能是该疾病的病理生理风险因素。我们的研究结果为谷氨酸调节异常导致精神分裂症病理生理学变化这一假说以及mGlu2/3激动剂的抗精神病潜力提供了新的支持。