Shotton Jamie, Blake Andrew, Cipolla Roberto
Toshiba Corporate R&D Center, Kawasaki, Japan.
IEEE Trans Pattern Anal Mach Intell. 2008 Jul;30(7):1270-81. doi: 10.1109/TPAMI.2007.70772.
Psychophysical studies [9], [17] show that we can recognize objects using fragments of outline contour alone. This paper proposes a new automatic visual recognition system based only on local contour features, capable of localizing objects in space and scale. The system first builds a class-specific codebook of local fragments of contour using a novel formulation of chamfer matching. These local fragments allow recognition that is robust to within-class variation, pose changes, and articulation. Boosting combines these fragments into a cascaded sliding-window classifier, and mean shift is used to select strong responses as a final set of detections. We show how learning can be performed iteratively on both training and test sets to boot-strap an improved classifier. We compare with other methods based on contour and local descriptors in our detailed evaluation over 17 challenging categories, and obtain highly competitive results. The results confirm that contour is indeed a powerful cue for multi-scale and multi-class visual object recognition.
心理物理学研究[9]、[17]表明,我们仅使用轮廓线的片段就能识别物体。本文提出了一种全新的自动视觉识别系统,该系统仅基于局部轮廓特征,能够在空间和尺度上对物体进行定位。该系统首先使用一种新颖的倒角匹配公式构建特定类别的轮廓局部片段码本。这些局部片段使得识别对类内变化、姿态变化和关节运动具有鲁棒性。提升算法将这些片段组合成一个级联滑动窗口分类器,均值漂移用于选择强响应作为最终的检测集。我们展示了如何在训练集和测试集上迭代地进行学习,以引导改进分类器。在对17个具有挑战性的类别进行的详细评估中,我们将其与基于轮廓和局部描述符的其他方法进行了比较,并获得了极具竞争力的结果。结果证实,轮廓确实是多尺度和多类视觉物体识别的有力线索。