Department of CISE, University of Florida, E324, CSE Building, PO Box 11612, Gainesville, FL 32611, USA.
IEEE Trans Pattern Anal Mach Intell. 2012 Dec;34(12):2407-19. doi: 10.1109/TPAMI.2012.44.
In this paper, we consider the family of total Bregman divergences (tBDs) as an efficient and robust "distance" measure to quantify the dissimilarity between shapes. We use the tBD-based ℓ₁-norm center as the representative of a set of shapes, and call it the t-center. First, we briefly present and analyze the properties of the tBDs and t-centers following our previous work in. Then, we prove that for any tBD, there exists a distribution which belongs to the lifted exponential family (lEF) of statistical distributions. Further, we show that finding the maximum a posteriori (MAP) estimate of the parameters of the lifted exponential family distribution is equivalent to minimizing the tBD to find the t-centers. This leads to a new clustering technique, namely, the total Bregman soft clustering algorithm. We evaluate the tBD, t-center, and the soft clustering algorithm on shape retrieval applications. Our shape retrieval framework is composed of three steps: 1) extraction of the shape boundary points, 2) affine alignment of the shapes and use of a Gaussian mixture model (GMM) to represent the aligned boundaries, and 3) comparison of the GMMs using tBD to find the best matches given a query shape. To further speed up the shape retrieval algorithm, we perform hierarchical clustering of the shapes using our total Bregman soft clustering algorithm. This enables us to compare the query with a small subset of shapes which are chosen to be the cluster t-centers. We evaluate our method on various public domain 2D and 3D databases, and demonstrate comparable or better results than state-of-the-art retrieval techniques.
在本文中,我们将全布雷格曼散度(tBD)族视为一种有效且稳健的“距离”度量方法,用于量化形状之间的差异。我们使用基于 tBD 的 ℓ₁范数中心作为一组形状的代表,并将其称为 t 中心。首先,我们简要介绍并分析了 tBD 和 t 中心的性质,这些内容都是基于我们之前的工作[1]。然后,我们证明了对于任何 tBD,都存在一个属于统计分布的 lifted exponential family(lEF)的分布。此外,我们还表明,找到 lifted exponential family 分布的最大后验(MAP)参数估计等同于通过最小化 tBD 来找到 t 中心。这导致了一种新的聚类技术,即全布雷格曼软聚类算法。我们在形状检索应用中评估了 tBD、t 中心和软聚类算法。我们的形状检索框架由三个步骤组成:1)提取形状边界点,2)对形状进行仿射对齐,并使用高斯混合模型(GMM)表示对齐的边界,3)使用 tBD 比较 GMM,以在给定查询形状的情况下找到最佳匹配。为了进一步加快形状检索算法的速度,我们使用全布雷格曼软聚类算法对形状进行分层聚类。这使我们能够将查询与一小部分形状进行比较,这些形状被选为聚类 t 中心。我们在各种公共领域的 2D 和 3D 数据库上评估了我们的方法,并展示了与最先进的检索技术相当或更好的结果。