Wang Yimin, Braams Bastiaan J, Bowman Joel M, Carter Stuart, Tew David P
Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.
J Chem Phys. 2008 Jun 14;128(22):224314. doi: 10.1063/1.2937732.
Quantum calculations of the ground vibrational state tunneling splitting of H-atom and D-atom transfer in malonaldehyde are performed on a full-dimensional ab initio potential energy surface (PES). The PES is a fit to 11 147 near basis-set-limit frozen-core CCSD(T) electronic energies. This surface properly describes the invariance of the potential with respect to all permutations of identical atoms. The saddle-point barrier for the H-atom transfer on the PES is 4.1 kcalmol, in excellent agreement with the reported ab initio value. Model one-dimensional and "exact" full-dimensional calculations of the splitting for H- and D-atom transfer are done using this PES. The tunneling splittings in full dimensionality are calculated using the unbiased "fixed-node" diffusion Monte Carlo (DMC) method in Cartesian and saddle-point normal coordinates. The ground-state tunneling splitting is found to be 21.6 cm(-1) in Cartesian coordinates and 22.6 cm(-1) in normal coordinates, with an uncertainty of 2-3 cm(-1). This splitting is also calculated based on a model which makes use of the exact single-well zero-point energy (ZPE) obtained with the MULTIMODE code and DMC ZPE and this calculation gives a tunneling splitting of 21-22 cm(-1). The corresponding computed splittings for the D-atom transfer are 3.0, 3.1, and 2-3 cm(-1). These calculated tunneling splittings agree with each other to within less than the standard uncertainties obtained with the DMC method used, which are between 2 and 3 cm(-1), and agree well with the experimental values of 21.6 and 2.9 cm(-1) for the H and D transfer, respectively.
在一个全维从头算势能面(PES)上对丙二醛中氢原子和氘原子转移的基态振动隧穿分裂进行了量子计算。该PES是对11147个接近基组极限的冻结核心CCSD(T)电子能量的拟合。这个表面恰当地描述了势能相对于相同原子所有排列的不变性。PES上氢原子转移的鞍点势垒为4.1千卡/摩尔,与报道的从头算值高度吻合。使用这个PES对氢原子和氘原子转移的分裂进行了一维模型和“精确”的全维计算。全维的隧穿分裂是在笛卡尔坐标和鞍点法向坐标中使用无偏“固定节点”扩散蒙特卡罗(DMC)方法计算的。发现基态隧穿分裂在笛卡尔坐标中为21.6厘米⁻¹,在法向坐标中为22.6厘米⁻¹,不确定度为2 - 3厘米⁻¹。这个分裂也基于一个模型进行了计算,该模型利用了用MULTIMODE代码获得的精确单阱零点能(ZPE)和DMC ZPE,此计算给出的隧穿分裂为21 - 22厘米⁻¹。氘原子转移的相应计算分裂为3.0、3.1和2 - 3厘米⁻¹。这些计算得到的隧穿分裂相互之间的吻合度在所用DMC方法获得的标准不确定度(2至3厘米⁻¹)范围内,并且分别与氢和氘转移的实验值21.6和2.9厘米⁻¹吻合良好。