Suppr超能文献

反应性机器学习势能面的异常值检测

Outlier-detection for reactive machine learned potential energy surfaces.

作者信息

Vazquez-Salazar Luis Itza, Käser Silvan, Meuwly Markus

机构信息

Department of Chemistry, University of Basel, Basel, Switzerland.

出版信息

NPJ Comput Mater. 2025;11(1):33. doi: 10.1038/s41524-024-01473-6. Epub 2025 Feb 15.

Abstract

Uncertainty quantification (UQ) to detect samples with large expected errors (outliers) is applied to reactive molecular potential energy surfaces (PESs). Three methods-Ensembles, deep evidential regression (DER), and Gaussian Mixture Models (GMM)-were applied to the H-transfer reaction between -Criegee and vinyl hydroxyperoxide. The results indicate that ensemble models provide the best results for detecting outliers, followed by GMM. For example, from a pool of 1000 structures with the largest uncertainty, the detection quality for outliers is ~90% and ~50%, respectively, if 25 or 1000 structures with large errors are sought. On the contrary, the limitations of the statistical assumptions of DER greatly impact its prediction capabilities. Finally, a structure-based indicator was found to be correlated with large average error, which may help to rapidly classify new structures into those that provide an advantage for refining the neural network.

摘要

不确定性量化(UQ)用于检测具有较大预期误差的样本(异常值),并应用于反应性分子势能面(PES)。三种方法——集成模型、深度证据回归(DER)和高斯混合模型(GMM)——被应用于 - 克里吉和乙烯基过氧化氢之间的氢转移反应。结果表明,集成模型在检测异常值方面提供了最佳结果,其次是GMM。例如,从1000个具有最大不确定性的结构中,如果寻找25个或1000个具有大误差的结构,异常值的检测质量分别约为90%和50%。相反,DER统计假设的局限性极大地影响了其预测能力。最后,发现一种基于结构的指标与大平均误差相关,这可能有助于快速将新结构分类为那些对优化神经网络具有优势的结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7189/11829830/1a44fb142041/41524_2024_1473_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验