Bachir Alexia I, Kolin David L, Heinze Katrin G, Hebert Benedict, Wiseman Paul W
Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada.
J Chem Phys. 2008 Jun 14;128(22):225105. doi: 10.1063/1.2918273.
Fluctuation-based fluorescence correlation techniques are widely used to study dynamics of fluorophore labeled biomolecules in cells. Semiconductor quantum dots (QDs) have been developed as bright and photostable fluorescent probes for various biological applications. However, the fluorescence intermittency of QDs, commonly referred to as "blinking", is believed to complicate quantitative correlation spectroscopy measurements of transport properties, as it is an additional source of fluctuations that contribute on a wide range of time scales. The QD blinking fluctuations obey power-law distributions so there is no single characteristic fluctuation time for this phenomenon. Consequently, it is highly challenging to separate fluorescence blinking fluctuations from those due to transport dynamics. Here, we quantify the bias introduced by QD blinking in transport measurements made using fluctuation methods. Using computer simulated image time series of diffusing point emitters with set "on" and "off" time emission characteristics, we show that blinking results in a systematic overestimation of the diffusion coefficients measured with correlation analysis when a simple diffusion model is used to fit the time correlation decays. The relative error depends on the inherent blinking power-law statistics, the sampling rate relative to the characteristic diffusion time and blinking times, and the total number of images in the time series. This systematic error can be significant; moreover, it can often go unnoticed in common transport model fits of experimental data. We propose an alternative fitting model that incorporates blinking and improves the accuracy of the recovered diffusion coefficients. We also show how to completely eliminate the bias by applying k-space image correlation spectroscopy, which completely separates the diffusion and blinking dynamics, and allows the simultaneous recovery of accurate diffusion coefficients and QD blinking probability distribution function exponents.
基于涨落的荧光相关技术被广泛用于研究细胞中荧光团标记生物分子的动力学。半导体量子点(QD)已被开发为用于各种生物应用的明亮且光稳定的荧光探针。然而,量子点的荧光间歇性,通常称为“闪烁”,被认为会使传输性质的定量相关光谱测量变得复杂,因为它是在很宽的时间尺度上产生贡献的额外涨落源。量子点闪烁涨落服从幂律分布,所以这种现象没有单一的特征涨落时间。因此,将荧光闪烁涨落与传输动力学引起的涨落区分开来极具挑战性。在这里,我们量化了在使用涨落方法进行的传输测量中量子点闪烁所引入的偏差。通过使用具有设定“开”和“关”时间发射特性的扩散点发射器的计算机模拟图像时间序列,我们表明,当使用简单扩散模型拟合时间相关衰减时,闪烁会导致用相关分析测量的扩散系数出现系统性高估。相对误差取决于固有的闪烁幂律统计、相对于特征扩散时间和闪烁时间的采样率以及时间序列中的图像总数。这种系统误差可能很大;此外,在实验数据的常见传输模型拟合中它往往不易被注意到。我们提出了一种替代拟合模型,该模型纳入了闪烁并提高了恢复的扩散系数的准确性。我们还展示了如何通过应用k空间图像相关光谱法完全消除偏差,该方法能完全分离扩散和闪烁动力学,并允许同时准确恢复扩散系数和量子点闪烁概率分布函数指数。