Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
ACS Nano. 2020 Mar 24;14(3):3227-3241. doi: 10.1021/acsnano.9b08658. Epub 2020 Mar 11.
Quantum dots (QDs) are a class of fluorescent nanocrystals in development as labels for molecular imaging in cells and tissues. Recently, coatings for quantum dots based on multidentate polymers have improved labeling performance in a range of bioanalytical applications, primarily due to reduced probe hydrodynamic size. Now, an ongoing challenge is to eliminate nonspecific binding between these small probes and cellular components that mask specifically labeled molecules. Here, we describe insights into controlling and minimizing intermolecular interactions governing nonspecific binding using multidentate polymers with tunable hydrophilic functional groups that are cationic, anionic, zwitterionic (ZW), or nonionic (oligoethylene glycol; OEG). By fixing surface-binding groups and polymer length, coated colloids have similar sizes but diverse physicochemical properties. We measure binding to globular proteins, fixed cells, and living cells and observe a substantial improvement in nonspecific binding resistance when surfaces are functionalized with a combination of ZW and OEG. The independent underlying effects of counterion adsorption and flexibility appear to synergistically resist adsorption when combined, particularly for fixed cells enriched in both charged and hydrophobic moieties. We further show that ZW-OEG QDs are stable under diverse conditions and can be self-assembled with antibodies to specifically label surface antigens on living cells and cytoplasmic proteins in fixed cells. This surface engineering strategy can be adopted across the diverse range of colloidal materials currently in use and in development for biomedical applications to optimize their molecular labeling specificity.
量子点 (QD) 是一类荧光纳米晶体,目前正在开发中,作为细胞和组织中分子成像的标记物。最近,基于多齿聚合物的量子点涂层提高了一系列生物分析应用中的标记性能,主要是由于探针水动力尺寸减小。目前,一个持续的挑战是消除这些小探针与细胞成分之间的非特异性结合,这些细胞成分掩盖了特异性标记的分子。在这里,我们描述了使用带有可调节亲水性官能团的多齿聚合物来控制和最小化非特异性结合的分子间相互作用的见解,这些官能团带正电荷、负电荷、两性离子 (ZW) 或非离子 (聚乙二醇;OEG)。通过固定表面结合基团和聚合物长度,涂覆胶体具有相似的尺寸,但具有不同的物理化学性质。我们测量了与球状蛋白、固定细胞和活细胞的结合情况,并观察到当表面用 ZW 和 OEG 的组合功能化时,非特异性结合阻力有了很大的提高。抗衡离子吸附和灵活性的独立潜在影响似乎在结合时协同抵抗吸附,特别是对于富含带电和疏水部分的固定细胞。我们还表明,ZW-OEG QD 在各种条件下都很稳定,可以与抗体自组装,以特异性标记活细胞表面抗原和固定细胞中的细胞质蛋白。这种表面工程策略可以应用于目前用于生物医学应用的各种胶体材料中,并进行优化,以提高其分子标记特异性。