Prentiss Michael C, Wales David J, Wolynes Peter G
Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California 92093, USA.
J Chem Phys. 2008 Jun 14;128(22):225106. doi: 10.1063/1.2929833.
Associative memory Hamiltonian structure prediction potentials are not overly rugged, thereby suggesting their landscapes are like those of actual proteins. In the present contribution we show how basin-hopping global optimization can identify low-lying minima for the corresponding mildly frustrated energy landscapes. For small systems the basin-hopping algorithm succeeds in locating both lower minima and conformations closer to the experimental structure than does molecular dynamics with simulated annealing. For large systems the efficiency of basin-hopping decreases for our initial implementation, where the steps consist of random perturbations to the Cartesian coordinates. We implemented umbrella sampling using basin-hopping to further confirm when the global minima are reached. We have also improved the energy surface by employing bioinformatic techniques for reducing the roughness or variance of the energy surface. Finally, the basin-hopping calculations have guided improvements in the excluded volume of the Hamiltonian, producing better structures. These results suggest a novel and transferable optimization scheme for future energy function development.
关联记忆哈密顿结构预测势并非过于崎岖,从而表明它们的能量景观类似于实际蛋白质的能量景观。在本论文中,我们展示了盆地跳跃全局优化如何能够识别相应的轻度受挫能量景观中的低能量极小值。对于小系统,与带有模拟退火的分子动力学相比,盆地跳跃算法成功找到了更低的极小值以及更接近实验结构的构象。对于大系统,在我们最初的实现中,盆地跳跃的效率会降低,其中步骤包括对笛卡尔坐标的随机扰动。我们使用盆地跳跃实现了伞形采样,以进一步确认何时达到全局极小值。我们还通过采用生物信息学技术来降低能量表面的粗糙度或方差,从而改进了能量表面。最后,盆地跳跃计算指导了哈密顿量排除体积的改进,产生了更好的结构。这些结果为未来能量函数的发展提出了一种新颖且可转移的优化方案。