Suppr超能文献

使用盆地跳跃法进行蛋白质结构预测。

Protein structure prediction using basin-hopping.

作者信息

Prentiss Michael C, Wales David J, Wolynes Peter G

机构信息

Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California 92093, USA.

出版信息

J Chem Phys. 2008 Jun 14;128(22):225106. doi: 10.1063/1.2929833.

Abstract

Associative memory Hamiltonian structure prediction potentials are not overly rugged, thereby suggesting their landscapes are like those of actual proteins. In the present contribution we show how basin-hopping global optimization can identify low-lying minima for the corresponding mildly frustrated energy landscapes. For small systems the basin-hopping algorithm succeeds in locating both lower minima and conformations closer to the experimental structure than does molecular dynamics with simulated annealing. For large systems the efficiency of basin-hopping decreases for our initial implementation, where the steps consist of random perturbations to the Cartesian coordinates. We implemented umbrella sampling using basin-hopping to further confirm when the global minima are reached. We have also improved the energy surface by employing bioinformatic techniques for reducing the roughness or variance of the energy surface. Finally, the basin-hopping calculations have guided improvements in the excluded volume of the Hamiltonian, producing better structures. These results suggest a novel and transferable optimization scheme for future energy function development.

摘要

关联记忆哈密顿结构预测势并非过于崎岖,从而表明它们的能量景观类似于实际蛋白质的能量景观。在本论文中,我们展示了盆地跳跃全局优化如何能够识别相应的轻度受挫能量景观中的低能量极小值。对于小系统,与带有模拟退火的分子动力学相比,盆地跳跃算法成功找到了更低的极小值以及更接近实验结构的构象。对于大系统,在我们最初的实现中,盆地跳跃的效率会降低,其中步骤包括对笛卡尔坐标的随机扰动。我们使用盆地跳跃实现了伞形采样,以进一步确认何时达到全局极小值。我们还通过采用生物信息学技术来降低能量表面的粗糙度或方差,从而改进了能量表面。最后,盆地跳跃计算指导了哈密顿量排除体积的改进,产生了更好的结构。这些结果为未来能量函数的发展提出了一种新颖且可转移的优化方案。

相似文献

1
Protein structure prediction using basin-hopping.
J Chem Phys. 2008 Jun 14;128(22):225106. doi: 10.1063/1.2929833.
2
Hybridizing rapidly exploring random trees and basin hopping yields an improved exploration of energy landscapes.
J Comput Chem. 2016 Mar 30;37(8):739-52. doi: 10.1002/jcc.24256. Epub 2015 Dec 29.
3
Mutational Basin-Hopping: Combined Structure and Sequence Optimization for Biomolecules.
J Phys Chem Lett. 2018 Nov 1;9(21):6169-6173. doi: 10.1021/acs.jpclett.8b02839. Epub 2018 Oct 11.
4
Protein structure prediction: assembly of secondary structure elements by basin-hopping.
Chemphyschem. 2014 Oct 20;15(15):3378-90. doi: 10.1002/cphc.201402247. Epub 2014 Jul 23.
5
A minima hopping study of all-atom protein folding and structure prediction.
J Phys Chem B. 2009 May 21;113(20):7315-21. doi: 10.1021/jp8106793.
7
Revised basin-hopping Monte Carlo algorithm for structure optimization of clusters and nanoparticles.
J Chem Inf Model. 2013 Sep 23;53(9):2282-98. doi: 10.1021/ci400224z. Epub 2013 Sep 6.
8
Energy landscape and global optimization for a frustrated model protein.
J Phys Chem B. 2011 Oct 6;115(39):11525-9. doi: 10.1021/jp207246m. Epub 2011 Sep 9.
10

引用本文的文献

1
Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics.
PLoS Comput Biol. 2016 Apr 28;12(4):e1004619. doi: 10.1371/journal.pcbi.1004619. eCollection 2016 Apr.
2
Holographic acoustic elements for manipulation of levitated objects.
Nat Commun. 2015 Oct 27;6:8661. doi: 10.1038/ncomms9661.
3
Learning To Fold Proteins Using Energy Landscape Theory.
Isr J Chem. 2014 Aug;54(8-9):1311-1337. doi: 10.1002/ijch.201300145.
4
Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method.
BMC Struct Biol. 2013;13 Suppl 1(Suppl 1):S8. doi: 10.1186/1472-6807-13-S1-S8. Epub 2013 Nov 8.
5
A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction.
BMC Struct Biol. 2013;13 Suppl 1(Suppl 1):S4. doi: 10.1186/1472-6807-13-S1-S4. Epub 2013 Nov 8.
6
7
HopDock: a probabilistic search algorithm for decoy sampling in protein-protein docking.
Proteome Sci. 2013 Nov 7;11(Suppl 1):S6. doi: 10.1186/1477-5956-11-S1-S6.
8
Evolutionary-inspired probabilistic search for enhancing sampling of local minima in the protein energy surface.
Proteome Sci. 2012 Jun 21;10 Suppl 1(Suppl 1):S5. doi: 10.1186/1477-5956-10-S1-S5.
9
The energy landscape, folding pathways and the kinetics of a knotted protein.
PLoS Comput Biol. 2010 Jul 1;6(7):e1000835. doi: 10.1371/journal.pcbi.1000835.
10
Methods for Monte Carlo simulations of biomacromolecules.
Annu Rep Comput Chem. 2009 Jan 1;5:49-76. doi: 10.1016/S1574-1400(09)00503-9.

本文引用的文献

1
Protein Structure Prediction:  The Next Generation.
J Chem Theory Comput. 2006 May;2(3):705-16. doi: 10.1021/ct0600058.
2
Toward high-resolution prediction and design of transmembrane helical protein structures.
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15682-7. doi: 10.1073/pnas.0702515104. Epub 2007 Sep 28.
3
Toward protein tertiary structure recognition by means of associative memory hamiltonians.
Science. 1989 Oct 20;246(4928):371-3. doi: 10.1126/science.246.4928.371.
4
Water mediation in protein folding and molecular recognition.
Annu Rev Biophys Biomol Struct. 2006;35:389-415. doi: 10.1146/annurev.biophys.35.040405.102134.
6
Basin hopping simulations for all-atom protein folding.
J Chem Phys. 2006 Jan 28;124(4):044515. doi: 10.1063/1.2138030.
7
Global optimization and folding pathways of selected alpha-helical proteins.
J Chem Phys. 2005 Dec 15;123(23):234901. doi: 10.1063/1.2135783.
8
9
Scalable molecular dynamics with NAMD.
J Comput Chem. 2005 Dec;26(16):1781-802. doi: 10.1002/jcc.20289.
10
GROMACS: fast, flexible, and free.
J Comput Chem. 2005 Dec;26(16):1701-18. doi: 10.1002/jcc.20291.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验