Vogel Reiner, Mahalingam Mohana, Lüdeke Steffen, Huber Thomas, Siebert Friedrich, Sakmar Thomas P
Biophysics Section, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 9, D-79104 Freiburg, Germany.
J Mol Biol. 2008 Jul 18;380(4):648-55. doi: 10.1016/j.jmb.2008.05.022. Epub 2008 May 17.
Activation of family A G-protein-coupled receptors involves a rearrangement of a conserved interhelical cytoplasmic hydrogen bond network between the E(D)RY motif on transmembrane helix 3 (H3) and residues on H6, which is commonly termed the cytoplasmic "ionic lock." Glu134(3.49) of the E(D)RY motif also forms an intrahelical salt bridge with neighboring Arg135(3.50) in the dark-state crystal structure of rhodopsin. We examined the roles of Glu134(3.49) and Arg135(3.50) on H3 and Glu247(6.30) and Glu249(6.32) on H6 on the activation of rhodopsin using Fourier transform infrared spectroscopy of wild-type and mutant pigments reconstituted into lipid membranes. Activation of rhodopsin is pH-dependent with proton uptake during the transition from the inactive Meta I to the active Meta II state. Glu134(3.49) of the ERY motif is identified as the proton-accepting group, using the Fourier transform infrared protonation signature and the absence of a pH dependence of activation in the E134Q mutant. Neutralization of Arg135(3.50) similarly leads to pH-independent receptor activation, but with structural alterations in the Meta II state. Neutralization of Glu247(6.30) and Glu249(6.32) on H6, which are involved in interhelical interactions with H3 and H7, respectively, led to a shift toward Meta II in the E247Q and E249Q mutants while retaining the pH sensitivity of the equilibrium. Disruption of the interhelical interaction of Glu247(6.30) and Glu249(6.32) on H6 with H3 and H7 plays its role during receptor activation, but neutralization of the intrahelical salt bridge between Glu134(3.49) and Arg135(3.50) is considerably more critical for shifting the photoproduct equilibrium to the active conformation. These conclusions are discussed in the context of recent structural data of the beta(2)-adrenergic receptor.
A类G蛋白偶联受体的激活涉及跨膜螺旋3(H3)上的E(D)RY基序与H6上的残基之间保守的螺旋间胞质氢键网络的重排,这通常被称为胞质“离子锁”。在视紫红质的暗态晶体结构中,E(D)RY基序的Glu134(3.49)也与相邻的Arg135(3.50)形成螺旋内盐桥。我们使用重组到脂质膜中的野生型和突变型色素的傅里叶变换红外光谱,研究了H3上的Glu134(3.49)和Arg135(3.50)以及H6上的Glu247(6.30)和Glu249(6.32)对视紫红质激活的作用。视紫红质的激活是pH依赖性的,在从无活性的Meta I转变为活性的Meta II状态期间有质子摄取。利用傅里叶变换红外质子化特征以及E134Q突变体中激活不存在pH依赖性,ERY基序的Glu134(3.49)被确定为质子接受基团。Arg135(3.50)的中和同样导致pH独立的受体激活,但在Meta II状态下有结构改变。H6上的Glu247(6.30)和Glu249(6.32)分别参与与H3和H7的螺旋间相互作用,它们的中和导致E247Q和E249Q突变体向Meta II转变,同时保留平衡的pH敏感性。H6上的Glu247(6.30)和Glu249(6.32)与H3和H7的螺旋间相互作用的破坏在受体激活过程中起作用,但Glu134(3.49)和Arg135(3.50)之间螺旋内盐桥的中和对于将光产物平衡转移到活性构象更为关键。这些结论在β2 -肾上腺素能受体的最新结构数据背景下进行了讨论。