Suppr超能文献

体重和质量对步行过程中跖屈肌活动的独立影响:对其在身体支撑和向前推进中所起作用的启示。

Independent effects of weight and mass on plantar flexor activity during walking: implications for their contributions to body support and forward propulsion.

作者信息

McGowan C P, Neptune R R, Kram R

机构信息

Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712, USA.

出版信息

J Appl Physiol (1985). 2008 Aug;105(2):486-94. doi: 10.1152/japplphysiol.90448.2008. Epub 2008 Jun 12.

Abstract

The ankle plantar flexor muscles, gastrocnemius (Gas) and soleus (Sol), have been shown to play important roles in providing body support and forward propulsion during human walking. However, there has been disagreement about the relative contributions of Gas and Sol to these functional tasks. In this study, using independent manipulations of body weight and body mass, we examined the relative contribution of the individual plantar flexors to support and propulsion. We hypothesized that Gas and Sol contribute to body support, whereas Sol is the primary contributor to forward trunk propulsion. We tested this hypothesis by measuring muscle activity while experimentally manipulating body weight and mass by 1) decreasing body weight using a weight support system, 2) increasing body mass alone using a combination of equal added trunk load and weight support, and 3) increasing trunk loads (increasing body weight and mass). The rationale for this study was that muscles that provide body support would be sensitive to changes in body weight, whereas muscles that provide forward propulsion would be sensitive to changes in body mass. Gas activity increased with added loads and decreased with weight support but showed only a small increase relative to control trials when mass alone was increased. Sol activity showed a similar increase with added loads and with added mass alone and decreased in early stance with weight support. Therefore, we accepted the hypothesis that Sol and Gas contribute to body support, whereas Sol is the primary contributor to forward trunk propulsion.

摘要

踝关节跖屈肌,即腓肠肌(Gas)和比目鱼肌(Sol),已被证明在人类行走过程中为身体提供支撑和向前推进方面发挥着重要作用。然而,关于Gas和Sol在这些功能任务中的相对贡献一直存在分歧。在本研究中,我们通过独立操控体重和身体质量,研究了各跖屈肌对支撑和推进的相对贡献。我们假设Gas和Sol有助于身体支撑,而Sol是向前躯干推进的主要贡献者。我们通过在实验中操控体重和质量时测量肌肉活动来检验这一假设,具体方法如下:1)使用体重支撑系统减轻体重;2)通过增加相同的躯干负荷和体重支撑来单独增加身体质量;3)增加躯干负荷(增加体重和身体质量)。本研究的基本原理是,提供身体支撑的肌肉会对体重变化敏感,而提供向前推进的肌肉会对身体质量变化敏感。Gas的活动随负荷增加而增加,随体重支撑而减少,但在仅增加质量时,相对于对照试验仅显示出小幅增加。Sol的活动在负荷增加和仅增加质量时表现出类似的增加,在早期站立阶段随体重支撑而减少。因此,我们接受了以下假设:Sol和Gas有助于身体支撑,而Sol是向前躯干推进的主要贡献者。

相似文献

3
Modulation of leg muscle function in response to altered demand for body support and forward propulsion during walking.
J Biomech. 2009 May 11;42(7):850-6. doi: 10.1016/j.jbiomech.2009.01.025. Epub 2009 Feb 27.
5
Effect of footwear on intramuscular EMG activity of plantar flexor muscles in walking.
J Electromyogr Kinesiol. 2020 Dec;55:102474. doi: 10.1016/j.jelekin.2020.102474. Epub 2020 Sep 18.
6
Imaging and Simulation of Inter-muscular Differences in Triceps Surae Contributions to Forward Propulsion During Walking.
Ann Biomed Eng. 2021 Feb;49(2):703-715. doi: 10.1007/s10439-020-02594-x. Epub 2020 Sep 8.
7
The modulation of forward propulsion, vertical support, and center of pressure by the plantarflexors during human walking.
Gait Posture. 2013 Sep;38(4):993-7. doi: 10.1016/j.gaitpost.2013.05.009. Epub 2013 Jun 17.
8
Muscle force redistributes segmental power for body progression during walking.
Gait Posture. 2004 Apr;19(2):194-205. doi: 10.1016/S0966-6362(03)00062-6.
10
Muscle contributions to whole-body sagittal plane angular momentum during walking.
J Biomech. 2011 Jan 4;44(1):6-12. doi: 10.1016/j.jbiomech.2010.08.015. Epub 2010 Sep 15.

引用本文的文献

1
Generation and modification of human locomotor EMG activity when walking faster and carrying additional weight.
Exp Physiol. 2025 Sep;110(9):1316-1335. doi: 10.1113/EP092063. Epub 2025 Mar 6.
2
A robotic emulator for the systematic exploration of transtibial biarticular prosthesis designs.
J Rehabil Assist Technol Eng. 2024 Sep 13;11:20556683241280733. doi: 10.1177/20556683241280733. eCollection 2024 Jan-Dec.
3
Alpha and beta/low-gamma frequency bands may have distinct neural origin and function during post-stroke walking.
Exp Brain Res. 2024 Oct;242(10):2309-2327. doi: 10.1007/s00221-024-06906-8. Epub 2024 Aug 6.
4
Assistance force-line of exosuit affects ankle multidimensional motion: a theoretical and experimental study.
J Neuroeng Rehabil. 2024 May 28;21(1):87. doi: 10.1186/s12984-024-01386-x.
5
Effects of backward-directed resistance on propulsive force generation during split-belt treadmill walking in non-impaired individuals.
Front Hum Neurosci. 2023 Dec 4;17:1214967. doi: 10.3389/fnhum.2023.1214967. eCollection 2023.
7
Using a Standing Heel-Rise Test as a Predictor of Ankle Muscle Strength in the Elderly.
Sports (Basel). 2023 Aug 2;11(8):146. doi: 10.3390/sports11080146.
10
EMG-informed neuromuscular model assesses the effects of varied bodyweight support on muscles during overground walking.
J Biomech. 2023 Apr;151:111532. doi: 10.1016/j.jbiomech.2023.111532. Epub 2023 Mar 6.

本文引用的文献

1
Effects of independently altering body weight and body mass on the metabolic cost of running.
J Exp Biol. 2007 Dec;210(Pt 24):4418-27. doi: 10.1242/jeb.004481.
2
In vivo measurement of dynamic rectus femoris function at postures representative of early swing phase.
J Biomech. 2008;41(1):137-44. doi: 10.1016/j.jbiomech.2007.07.011. Epub 2007 Aug 17.
3
The effects of adding mass to the legs on the energetics and biomechanics of walking.
Med Sci Sports Exerc. 2007 Mar;39(3):515-25. doi: 10.1249/mss.0b013e31802b3562.
4
An exploration of the function of the triceps surae during normal gait using functional electrical stimulation.
Gait Posture. 2007 Oct;26(4):482-8. doi: 10.1016/j.gaitpost.2006.12.001. Epub 2007 Jan 16.
5
The neuromuscular demands of toe walking: a forward dynamics simulation analysis.
J Biomech. 2007;40(6):1293-300. doi: 10.1016/j.jbiomech.2006.05.022. Epub 2006 Jul 12.
6
Muscles that support the body also modulate forward progression during walking.
J Biomech. 2006;39(14):2623-30. doi: 10.1016/j.jbiomech.2005.08.017. Epub 2005 Oct 10.
7
Assessment of two-dimensional induced accelerations from measured kinematic and kinetic data.
Gait Posture. 2005 Nov;22(3):182-8. doi: 10.1016/j.gaitpost.2004.08.007. Epub 2004 Dec 7.
8
Energy cost and muscular activity required for leg swing during walking.
J Appl Physiol (1985). 2005 Jul;99(1):23-30. doi: 10.1152/japplphysiol.01190.2004.
9
Load carriage using packs: a review of physiological, biomechanical and medical aspects.
Appl Ergon. 1996 Jun;27(3):207-16. doi: 10.1016/0003-6870(96)00013-0.
10
Muscle force redistributes segmental power for body progression during walking.
Gait Posture. 2004 Apr;19(2):194-205. doi: 10.1016/S0966-6362(03)00062-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验