Suppr超能文献

在代表摆动初期阶段的姿势下对股直肌动态功能进行体内测量。

In vivo measurement of dynamic rectus femoris function at postures representative of early swing phase.

作者信息

Hernández Antonio, Dhaher Yasin, Thelen Darryl G

机构信息

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

J Biomech. 2008;41(1):137-44. doi: 10.1016/j.jbiomech.2007.07.011. Epub 2007 Aug 17.

Abstract

Forward dynamic models suggest that muscle-induced joint motions depend on dynamic coupling between body segments. As a result, biarticular muscles may exhibit non-intuitive behavior in which the induced joint motion is opposite to that assumed based on anatomy. Empirical validation of such predictions is important for models to be relied upon to characterize muscle function. In this study, we measured, in vivo, the hip and knee accelerations induced by electrical stimulation of the rectus femoris (RF) and the vastus medialis (VM) at postures representatives of the toe-off and early swing phases of the gait cycle. Seven healthy young subjects were positioned side-lying with their lower limb supported on air bearings while a 90 ms pulse train stimulated each muscle separately or simultaneously. Lower limb kinematics were measured and compared to predictions from a similarly configured dynamic model of the lower limb. We found that both RF and VM, when stimulated independently, accelerated the hip and knee into extension at these postures, consistent with model predictions. Predicted ratios of hip acceleration to knee acceleration were generally within 1 s.d. of average values. In addition, measured responses to simultaneous RF and VM stimulation were within 13% of predictions based on the assumption that joint accelerations induced by activating two muscles simultaneously can be found by adding the joint accelerations induced by activating the same muscles independently. These results provide empirical evidence of the importance of considering dynamic effects when interpreting the role of muscles in generating movement.

摘要

正向动力学模型表明,肌肉引起的关节运动取决于身体各节段之间的动态耦合。因此,双关节肌肉可能表现出非直观的行为,即诱导的关节运动与基于解剖结构所假设的运动方向相反。对这类预测进行实证验证对于依靠模型来描述肌肉功能至关重要。在本研究中,我们在体内测量了在步态周期蹬离期和早期摆动期代表性姿势下,股直肌(RF)和股内侧肌(VM)电刺激所诱发的髋部和膝部加速度。七名健康的年轻受试者侧卧,下肢支撑在空气轴承上,同时用90毫秒的脉冲串分别或同时刺激每块肌肉。测量下肢运动学,并与类似配置的下肢动态模型的预测结果进行比较。我们发现,当单独刺激时,RF和VM都会使这些姿势下的髋部和膝部加速伸展,这与模型预测一致。预测的髋部加速度与膝部加速度之比通常在平均值的1个标准差范围内。此外,基于同时激活两块肌肉所诱发的关节加速度可以通过将单独激活相同肌肉所诱发的关节加速度相加这一假设,测量得到的对RF和VM同时刺激的反应在预测值的13%以内。这些结果为在解释肌肉在产生运动中的作用时考虑动态效应的重要性提供了实证依据。

相似文献

1
In vivo measurement of dynamic rectus femoris function at postures representative of early swing phase.
J Biomech. 2008;41(1):137-44. doi: 10.1016/j.jbiomech.2007.07.011. Epub 2007 Aug 17.
2
A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2009 Apr;17(2):167-75. doi: 10.1109/TNSRE.2009.2014235. Epub 2009 Feb 3.
3
Does epimuscular myofascial force transmission occur between the human quadriceps muscles in vivo during passive stretching?
J Biomech. 2019 Jan 23;83:91-96. doi: 10.1016/j.jbiomech.2018.11.026. Epub 2018 Nov 17.
5
Prolonged quadriceps activity following imposed hip extension: a neurophysiological mechanism for stiff-knee gait?
J Neurophysiol. 2007 Dec;98(6):3153-62. doi: 10.1152/jn.00726.2007. Epub 2007 Sep 26.
6
Electrical stimulation of the rectus femoris during pre-swing diminishes hip and knee flexion during the swing phase of normal gait.
IEEE Trans Neural Syst Rehabil Eng. 2010 Oct;18(5):523-30. doi: 10.1109/TNSRE.2010.2053150.
8
EMG activity and kinematics of human cycling movements at different constant velocities.
Brain Res. 1982 May 27;240(2):245-58. doi: 10.1016/0006-8993(82)90220-7.
9
The influence of muscles on knee flexion during the swing phase of gait.
J Biomech. 1996 Jun;29(6):723-33. doi: 10.1016/0021-9290(95)00144-1.
10
Relationship between regional neuromuscular regulation within human rectus femoris muscle and lower extremity kinematics during gait in elderly men.
J Electromyogr Kinesiol. 2018 Aug;41:103-108. doi: 10.1016/j.jelekin.2018.05.011. Epub 2018 May 31.

引用本文的文献

2
The effect of distal femoral extension osteotomy on muscle lengths after surgery.
J Child Orthop. 2017 Dec 1;11(6):472-478. doi: 10.1302/1863-2548.11.170087.
3
Tenosuspension of the Reflected Head of the Rectus Femoris in Hip Arthroscopy: Description of a Portal and a Surgical Maneuver.
Arthrosc Tech. 2017 Jul 17;6(4):e1015-e1019. doi: 10.1016/j.eats.2017.03.015. eCollection 2017 Aug.
4
The functional roles of muscles during sloped walking.
J Biomech. 2016 Oct 3;49(14):3244-3251. doi: 10.1016/j.jbiomech.2016.08.004. Epub 2016 Aug 6.
5
Empirical assessment of dynamic hamstring function during human walking.
J Biomech. 2013 Apr 26;46(7):1255-61. doi: 10.1016/j.jbiomech.2013.02.019. Epub 2013 Mar 26.
6
Electrical stimulation of the rectus femoris during pre-swing diminishes hip and knee flexion during the swing phase of normal gait.
IEEE Trans Neural Syst Rehabil Eng. 2010 Oct;18(5):523-30. doi: 10.1109/TNSRE.2010.2053150.
7
Muscle contributions to support and progression during single-limb stance in crouch gait.
J Biomech. 2010 Aug 10;43(11):2099-105. doi: 10.1016/j.jbiomech.2010.04.003. Epub 2010 May 20.
8
Forward dynamics simulations provide insight into muscle mechanical work during human locomotion.
Exerc Sport Sci Rev. 2009 Oct;37(4):203-10. doi: 10.1097/JES.0b013e3181b7ea29.
9
Elastic coupling of limb joints enables faster bipedal walking.
J R Soc Interface. 2009 Jun 6;6(35):561-73. doi: 10.1098/rsif.2008.0415. Epub 2008 Oct 28.

本文引用的文献

1
Muscle-driven forward dynamic simulations for the study of normal and pathological gait.
J Neuroeng Rehabil. 2006 Mar 6;3:5. doi: 10.1186/1743-0003-3-5.
2
A baseline of dynamic muscle function during gait.
Gait Posture. 2006 Feb;23(2):211-21. doi: 10.1016/j.gaitpost.2005.02.004.
4
Muscles that influence knee flexion velocity in double support: implications for stiff-knee gait.
J Biomech. 2004 Aug;37(8):1189-96. doi: 10.1016/j.jbiomech.2003.12.005.
5
Muscle force is determined also by muscle relative position: isolated effects.
J Biomech. 2004 Jan;37(1):99-110. doi: 10.1016/s0021-9290(03)00235-5.
6
Individual muscle contributions to support in normal walking.
Gait Posture. 2003 Apr;17(2):159-69. doi: 10.1016/s0966-6362(02)00073-5.
10
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions.
Comput Methods Biomech Biomed Engin. 1999;2(3):201-231. doi: 10.1080/10255849908907988.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验