Smith Vivianne C, Pokorny Joel, Lee Barry B, Dacey Dennis M
The University of Chicago, Opthalmology and Visual Science, 940 East 57th Street, Chicago, IL 60637, USA.
Vision Res. 2008 Nov;48(26):2649-56. doi: 10.1016/j.visres.2008.05.002. Epub 2008 Jun 16.
The goal of this work was to describe the interaction of sensitivity regulation and temporal dynamics through the primate retina. A linear systems model was used to describe the temporal amplitude sensitivity at different retinal illuminances. Predictions for the primate H1 horizontal cell were taken as the starting point. The H1 model incorporated an early time-dependent stage of sensitivity regulation by the cones. It was adjusted to reduce the effects of gap junction input and then applied as input to a model describing temporal amplitude sensitivity of Parvocellular and Magnocellular pathway retinal ganglion cells. The ganglion cell model incorporated center-surround subtraction. The H1 based model required little modification to describe the Parvocellular data. The Magnocellular data required a further time-dependent stage of sensitivity regulation that resulted in Weber's Law. Psychophysical data reflect the sensitivity regulation of the retinal ganglion cell pathways but show a decline in temporal resolution that is most pronounced for the post-retinal processing of Parvocellular signals.
这项工作的目标是描述通过灵长类视网膜的敏感度调节与时间动态之间的相互作用。使用线性系统模型来描述不同视网膜照度下的时间幅度敏感度。以对灵长类H1水平细胞的预测作为起点。H1模型纳入了视锥细胞对敏感度调节的早期时间依赖性阶段。对其进行调整以减少缝隙连接输入的影响,然后将其作为输入应用于描述小细胞和大细胞通路视网膜神经节细胞时间幅度敏感度的模型。神经节细胞模型纳入了中心-周边减法。基于H1的模型只需稍加修改就能描述小细胞数据。大细胞数据需要一个进一步的时间依赖性敏感度调节阶段,这导致了韦伯定律。心理物理学数据反映了视网膜神经节细胞通路的敏感度调节,但显示出时间分辨率的下降,这在小细胞信号的视网膜后处理中最为明显。