Suppr超能文献

配体调节的核受体共抑制因子和共激活因子结合的定量分析,这是决定甲状腺激素受体配体效力和功效的关键相互作用。

Quantification of ligand-regulated nuclear receptor corepressor and coactivator binding, key interactions determining ligand potency and efficacy for the thyroid hormone receptor.

作者信息

Jeyakumar M, Webb Paul, Baxter John D, Scanlan Thomas S, Katzenellenbogen John A

机构信息

Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA.

出版信息

Biochemistry. 2008 Jul 15;47(28):7465-76. doi: 10.1021/bi800393u. Epub 2008 Jun 18.

Abstract

The potency and efficacy of ligands for nuclear receptors (NR) result both from the affinity of the ligand for the receptor and from the affinity that various coregulatory proteins have for ligand-receptor complexes; the latter interaction, however, is rarely quantified. To understand the molecular basis for ligand potency and efficacy, we developed dual time-resolved fluorescence resonance energy transfer (tr-FRET) assays and quantified binding of both ligand and coactivator or corepressor to the thyroid hormone receptor (TR). Promoter-bound TR exerts dual transcriptional regulatory functions, recruiting corepressor proteins and repressing transcription in the absence of thyroid hormones (THs) and shedding corepressors in favor of coactivators upon binding agonists, activating transcription. Our tr-FRET assays involve a TRE sequence labeled with terbium (fluorescence donor), TRbeta.RXRalpha heterodimer, and fluorescein-labeled NR interaction domains of coactivator SRC3 or corepressor NCoR (fluorescence acceptors). Through coregulator titrations, we could determine the affinity of SRC3 or NCoR for TRE-bound TR.RXR heterodimers, unliganded or saturated with different THs. Alternatively, through ligand titrations, we could determine the relative potencies of different THs. The order of TR agonist potencies is as follows: GC-1 approximately T 3 approximately TRIAC approximately T 4 >> rT 3 (for both coactivator recruitment and corepressor dissociation); the affinities of SRC3 binding to TR-ligand complexes followed a similar trend. This highlights the fact that the low activity of rT 3 is derived both from its low affinity for TR and from the low affinity of SRC for the TR-rT 3 complex. The TR antagonist NH-3 failed to induce SRC3 recruitment but did effect NCoR dissociation. These assays provide quantitative information about the affinity of two key interactions that are determinants of NR ligand potency and efficacy.

摘要

核受体(NR)配体的效力和功效既源于配体与受体的亲和力,也源于各种共调节蛋白对配体 - 受体复合物的亲和力;然而,后一种相互作用很少被量化。为了理解配体效力和功效的分子基础,我们开发了双时间分辨荧光共振能量转移(tr - FRET)测定法,并对配体以及共激活因子或共抑制因子与甲状腺激素受体(TR)的结合进行了量化。结合在启动子上的TR发挥双重转录调节功能,在没有甲状腺激素(THs)的情况下招募共抑制因子蛋白并抑制转录,而在结合激动剂后则释放共抑制因子转而结合共激活因子,从而激活转录。我们的tr - FRET测定法涉及用铽标记的TRE序列(荧光供体)、TRβ.RXRα异二聚体以及用荧光素标记的共激活因子SRC3或共抑制因子NCoR的NR相互作用结构域(荧光受体)。通过共调节因子滴定,我们可以确定SRC3或NCoR对结合在TRE上的TR.RXR异二聚体(未结合配体或被不同THs饱和)的亲和力。或者,通过配体滴定,我们可以确定不同THs的相对效力。TR激动剂效力的顺序如下:GC - 1≈T3≈TRIAC≈T4 >> rT3(对于共激活因子招募和共抑制因子解离而言);SRC3与TR - 配体复合物结合的亲和力也遵循类似趋势。这突出了一个事实,即rT3的低活性既源于其对TR的低亲和力,也源于SRC对TR - rT3复合物的低亲和力。TR拮抗剂NH - 3未能诱导SRC3的招募,但确实导致了NCoR的解离。这些测定法提供了关于两种关键相互作用亲和力的定量信息,而这两种相互作用是NR配体效力和功效的决定因素。

相似文献

6
TR surfaces and conformations required to bind nuclear receptor corepressor.
Mol Endocrinol. 2002 Feb;16(2):271-86. doi: 10.1210/mend.16.2.0777.
10
A regulatory role for RIP140 in nuclear receptor activation.
Mol Endocrinol. 1998 Jun;12(6):864-81. doi: 10.1210/mend.12.6.0123.

引用本文的文献

1
Impaired T3 uptake and action in MCT8-deficient cerebral organoids underlie Allan-Herndon-Dudley syndrome.
JCI Insight. 2024 Feb 20;9(7):e174645. doi: 10.1172/jci.insight.174645.
3
Going to extremes: the Goldilocks/Lagom principle and data distribution.
BMJ Open. 2019 Nov 27;9(11):e027767. doi: 10.1136/bmjopen-2018-027767.
4
Using TR-FRET to Investigate Protein-Protein Interactions: A Case Study of PXR-Coregulator Interaction.
Adv Protein Chem Struct Biol. 2018;110:31-63. doi: 10.1016/bs.apcsb.2017.06.001. Epub 2017 Aug 31.
5
Multicolored, Tb³⁺-Based Antibody-Free Detection of Multiple Tyrosine Kinase Activities.
Anal Chem. 2015 Aug 4;87(15):7555-8. doi: 10.1021/acs.analchem.5b02233. Epub 2015 Jul 24.
7
Nuclear receptors and epigenetic regulation: opportunities for nutritional targeting and disease prevention.
Adv Nutr. 2014 Jul 14;5(4):373-85. doi: 10.3945/an.114.005868. Print 2014 Jul.
8
Non-monotonic dose responses in studies of endocrine disrupting chemicals: bisphenol a as a case study.
Dose Response. 2013 Oct 7;12(2):259-76. doi: 10.2203/dose-response.13-020.Vandenberg. eCollection 2014 May.
9
Mechanisms enforcing the estrogen receptor β selectivity of botanical estrogens.
FASEB J. 2013 Nov;27(11):4406-18. doi: 10.1096/fj.13-234617. Epub 2013 Jul 23.
10
Development of time resolved fluorescence resonance energy transfer-based assay for FXR antagonist discovery.
Bioorg Med Chem. 2013 Jul 15;21(14):4266-78. doi: 10.1016/j.bmc.2013.04.069. Epub 2013 May 7.

本文引用的文献

1
Simultaneous monitoring of discrete binding events using dual-acceptor terbium-based LRET.
J Am Chem Soc. 2007 Nov 7;129(44):13372-3. doi: 10.1021/ja074791h. Epub 2007 Oct 11.
2
Thyroid hormone response element organization dictates the composition of active receptor.
J Biol Chem. 2007 Apr 27;282(17):12458-66. doi: 10.1074/jbc.M610700200. Epub 2007 Feb 20.
5
Analysis of ligand-dependent recruitment of coactivator peptides to RXRbeta in a time-resolved fluorescence resonance energy transfer assay.
Mol Cell Endocrinol. 2007 Jan 29;264(1-2):82-9. doi: 10.1016/j.mce.2006.10.016. Epub 2006 Dec 20.
8
Thyroid hormone action at the cellular, genomic and target gene levels.
Mol Cell Endocrinol. 2006 Feb 26;246(1-2):121-7. doi: 10.1016/j.mce.2005.11.030. Epub 2006 Jan 25.
9
Proteomic analysis of steady-state nuclear hormone receptor coactivator complexes.
Mol Endocrinol. 2005 Oct;19(10):2451-65. doi: 10.1210/me.2004-0476. Epub 2005 Jul 28.
10
Expanding functional diversity of the coactivators.
Trends Biochem Sci. 2005 Mar;30(3):126-32. doi: 10.1016/j.tibs.2005.01.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验