Jeyakumar M, Tanen M R, Bagchi M K
The Population Council and The Rockefeller University, New York, New York 10021, USA.
Mol Endocrinol. 1997 Jun;11(6):755-67. doi: 10.1210/mend.11.6.0003.
The nuclear hormone receptors belonging to the steroid/thyroid/retinoid receptor superfamily are ligand-inducible transcription factors. These receptors modulate transcription of specific cellular genes, either positively or negatively, by interacting with specific hormone response elements located near the target promoters. Recent studies indicated that the hormone- occupied, DNA-bound receptor acts in concert with a cellular coregulatory factor, termed coactivator, and the basal transcription machinery to mediate gene activation. Consistent with this scenario, a number of nuclear proteins with potential coactivator function have been isolated. In the present study, we demonstrate that steroid receptor coactivator-1 (SRC-1), a recently isolated candidate coactivator, functions as a positive regulator of the thyroid hormone receptor (TR)-mediated transactivation pathway. In transient transfection experiments, coexpression of SRC-1 significantly enhanced ligand-dependent transactivation of a thyroid hormone response element (TRE)-linked promoter by human TRbeta. Our studies revealed that deletion of six amino acids (451-456) in the extreme COOH-terminal region of TRbeta resulted in a receptor that retained the ability to bind T3 but failed to be stimulated by SRC-1. These six amino acids are part of an amphipathic helix that is highly conserved among nuclear hormone receptors and contains the core domain of the ligand-dependent transactivation function, AF-2. In agreement with this observation, in vitro protein binding studies showed that SRC-1 interacted with a ligand binding domain peptide (145-456) of TRbeta in a T3-dependent manner, whereas it failed to interact with a mutant ligand binding domain lacking the amino acids (451-456). We demonstrated that a synthetic peptide containing the COOH-terminal amino acids (437-456) of TRbeta efficiently blocked the ligand-induced binding of SRC-1 to the receptor. These results suggest that the conserved amphipathic helix that constitutes the AF-2 core domain of TRbeta is critical for interaction with SRC-1 and thereby plays a central role in coactivator-mediated transactivation. We further observed that a heterodimer of TRbeta and retinoid X receptor-alpha (RXR alpha), either in solution or bound to a DR+4 TRE, recruited SRC-1 in a T3-dependent manner. The AF-2 of TR was clearly involved in this process because a TR-RXR heterodimer containing a mutant TRbeta (1-450) with impaired AF-2 failed to bind to SRC-1. Surprisingly, the RXR-specific ligand 9-cis-retinoic acid induced binding of SRC-1 to the RXR component of the TRE-bound heterodimer. This novel finding suggests that RXR, as a heterodimeric partner of TR, has the potential to play an active role in transcriptional regulation. Our results raise the interesting possibility that a RXR-specific ligand may modulate T3-mediated signaling by inducing additional interactions between TRE-bound TR-RXR heterodimer and the coactivator.
属于类固醇/甲状腺/视黄酸受体超家族的核激素受体是配体诱导型转录因子。这些受体通过与位于靶启动子附近的特定激素反应元件相互作用,对特定细胞基因的转录起正向或负向调节作用。最近的研究表明,被激素占据、与DNA结合的受体与一种称为共激活因子的细胞共调节因子以及基础转录机制协同作用,介导基因激活。与此情况相符,已分离出许多具有潜在共激活因子功能的核蛋白。在本研究中,我们证明类固醇受体共激活因子-1(SRC-1),一种最近分离出的候选共激活因子,作为甲状腺激素受体(TR)介导的反式激活途径的正向调节因子发挥作用。在瞬时转染实验中,SRC-1的共表达显著增强了人TRβ对甲状腺激素反应元件(TRE)连接启动子的配体依赖性反式激活。我们的研究表明,TRβ极端COOH末端区域六个氨基酸(451 - 456)的缺失导致一种受体,该受体保留了结合T3的能力,但不能被SRC-1刺激。这六个氨基酸是两亲性螺旋的一部分,在核激素受体中高度保守,并且包含配体依赖性反式激活功能的核心结构域AF-2。与此观察结果一致,体外蛋白质结合研究表明,SRC-1以T3依赖性方式与TRβ的配体结合结构域肽(145 - 456)相互作用,而它不能与缺乏氨基酸(451 - 456)的突变配体结合结构域相互作用。我们证明,包含TRβ的COOH末端氨基酸(437 - 456)的合成肽有效地阻断了配体诱导的SRC-1与受体的结合。这些结果表明,构成TRβ的AF-2核心结构域的保守两亲性螺旋对于与SRC-1的相互作用至关重要,从而在共激活因子介导的反式激活中起核心作用。我们进一步观察到,TRβ和视黄酸X受体-α(RXRα)的异二聚体,无论是在溶液中还是与DR + 4 TRE结合,都以T3依赖性方式募集SRC-1。TR的AF-2显然参与了这个过程,因为包含AF-2受损的突变TRβ(1 - 450)的TR - RXR异二聚体不能与SRC-1结合。令人惊讶的是,RXR特异性配体9-顺式视黄酸诱导SRC-1与TRE结合的异二聚体的RXR组分结合。这一新发现表明,RXR作为TR的异二聚体伙伴,在转录调节中有可能发挥积极作用。我们的结果提出了一个有趣的可能性,即RXR特异性配体可能通过诱导TRE结合的TR - RXR异二聚体与共激活因子之间的额外相互作用来调节T3介导的信号传导。