Afsar Fayyaz A, Arif M, Yang J
Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, PO Nilore, Islamabad, Pakistan.
Physiol Meas. 2008 Jul;29(7):747-60. doi: 10.1088/0967-3334/29/7/004. Epub 2008 Jun 18.
In this paper, we describe a technique for automatic detection of ST segment deviations that can be used in the diagnosis of coronary heart disease (CHD) using ambulatory electrocardiogram (ECG) recordings. Preprocessing is carried out prior to the extraction of the ST segment which involves noise and artifact filtering using a digital bandpass filter, baseline removal and application of a discrete wavelet transform (DWT) based technique for detection and delineation of the QRS complex in ECG. Lead-dependent Karhunen-Loève transform (KLT) bases are used for dimensionality reduction of the ST segment data. ST deviation episodes are detected by a classifier ensemble comprising backpropagation neural networks. Results obtained through the use of our proposed method (sensitivity/positive predictive value = 90.75%/89.2%) compare well with those given in the existing research. Hence, the proposed method exhibits the potential to be adopted in the design of a practical ischemia detection system.
在本文中,我们描述了一种用于自动检测ST段偏差的技术,该技术可用于利用动态心电图(ECG)记录诊断冠心病(CHD)。在提取ST段之前进行预处理,这包括使用数字带通滤波器进行噪声和伪迹滤波、基线去除以及应用基于离散小波变换(DWT)的技术来检测和描绘心电图中的QRS复合波。基于导联的卡尔胡宁 - 洛伊夫变换(KLT)基用于ST段数据的降维。ST段偏差发作由包含反向传播神经网络的分类器集成来检测。通过使用我们提出的方法获得的结果(灵敏度/阳性预测值 = 90.75%/89.2%)与现有研究给出的结果相当。因此,所提出的方法在实际缺血检测系统的设计中具有被采用的潜力。