Laboratory of Biomedical Computer Systems and Imaging, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
Physiol Meas. 2010 Mar;31(3):323-37. doi: 10.1088/0967-3334/31/3/004. Epub 2010 Feb 3.
In ambulatory ECG records, besides transient ischaemic ST segment deviation episodes, there are also transient non-ischaemic heart-rate related ST segment deviation episodes present, which appear only due to a change in heart rate and thus complicate automatic detection of true ischaemic episodes. The goal of this work was to automatically classify these two types of episodes. The tested features to classify the ST segment deviation episodes were changes of heart rate, changes of the Mahalanobis distance of the first five Karhunen-Loève transform (KLT) coefficients of the QRS complex, changes of time-domain morphologic parameters of the ST segment and changes of the Legendre orthonormal polynomial coefficients of the ST segment. We chose Legendre basis functions because they best fit typical shapes of the ST segment morphology, thus allowing direct insight into the ST segment morphology changes through the feature space. The classification was performed with the help of decision trees. We tested the classification method using all records of the Long-Term ST Database on all ischaemic and all non-ischaemic heart-rate related deviation episodes according to annotation protocol B. In order to predict the real-world performance of the classification we used second-order aggregate statistics, gross and average statistics, and the bootstrap method. We obtained the best performance when we combined the heart-rate features, the Mahalanobis distance and the Legendre orthonormal polynomial coefficient features, with average sensitivity of 98.1% and average specificity of 85.2%.
在动态心电图记录中,除了短暂的缺血性 ST 段偏移发作外,还有短暂的非缺血性心率相关 ST 段偏移发作,这些发作仅由于心率的变化而出现,因此使自动检测真正的缺血性发作变得复杂。这项工作的目的是自动分类这两种类型的发作。用于分类 ST 段偏移发作的测试特征是心率变化、QRS 复合体前五个卡胡恩-洛伊变换(KLT)系数的马哈拉诺比斯距离变化、ST 段时域形态参数变化和 ST 段勒让德正交多项式系数变化。我们选择勒让德基函数,因为它们最适合 ST 段形态的典型形状,从而允许通过特征空间直接洞察 ST 段形态变化。分类是通过决策树完成的。我们根据注释协议 B,使用长期 ST 数据库的所有记录对所有缺血性和所有非缺血性心率相关的偏移发作进行了分类方法测试。为了预测分类的实际性能,我们使用二阶聚合统计、总统计和平均统计以及引导方法。当我们结合心率特征、马哈拉诺比斯距离和勒让德正交多项式系数特征时,获得了最佳性能,平均敏感性为 98.1%,平均特异性为 85.2%。