Suppr超能文献

神经损伤和节段性再生对神经变形再生细胞关联的影响。

Effects of nerve injury and segmental regeneration on the cellular correlates of neural morphallaxis.

作者信息

Martinez Veronica G, Manson Josiah M B, Zoran Mark J

机构信息

Department of Biology, Southwestern University, Georgetown, Texas, USA.

出版信息

J Exp Zool B Mol Dev Evol. 2008 Sep 15;310(6):520-33. doi: 10.1002/jez.b.21224.

Abstract

Functional recovery of neural networks after injury requires a series of signaling events similar to the embryonic processes that governed initial network construction. Neural morphallaxis, a form of nervous system regeneration, involves reorganization of adult neural connectivity patterns. Neural morphallaxis in the worm, Lumbriculus variegatus, occurs during asexual reproduction and segmental regeneration, as body fragments acquire new positional identities along the anterior-posterior axis. Ectopic head (EH) formation, induced by ventral nerve cord lesion, generated morphallactic plasticity including the reorganization of interneuronal sensory fields and the induction of a molecular marker of neural morphallaxis. Morphallactic changes occurred only in segments posterior to an EH. Neither EH formation, nor neural morphallaxis was observed after dorsal body lesions, indicating a role for nerve cord injury in morphallaxis induction. Furthermore, a hierarchical system of neurobehavioral control was observed, where anterior heads were dominant and an EH controlled body movements only in the absence of the anterior head. Both suppression of segmental regeneration and blockade of asexual fission, after treatment with boric acid, disrupted the maintenance of neural morphallaxis, but did not block its induction. Therefore, segmental regeneration (i.e., epimorphosis) may not be required for the induction of morphallactic remodeling of neural networks. However, on-going epimorphosis appears necessary for the long-term consolidation of cellular and molecular mechanisms underlying the morphallaxis of neural circuitry.

摘要

损伤后神经网络的功能恢复需要一系列类似于胚胎发育过程中调控初始网络构建的信号事件。神经变形再生是神经系统再生的一种形式,涉及成体神经连接模式的重组。蚯蚓(Lumbriculus variegatus)的神经变形再生发生在无性繁殖和体节再生过程中,因为身体片段会沿着前后轴获得新的位置身份。由腹神经索损伤诱导的异位头部(EH)形成产生了变形再生可塑性,包括中间神经元感觉场的重组和神经变形再生分子标记物的诱导。变形再生变化仅发生在EH后方的体节中。背部身体损伤后既未观察到EH形成,也未观察到神经变形再生,这表明神经索损伤在变形再生诱导中起作用。此外,还观察到一个神经行为控制的分级系统,其中前部头部占主导地位,并且只有在没有前部头部的情况下,EH才控制身体运动。用硼酸处理后,节段再生的抑制和无性分裂的阻断均破坏了神经变形再生的维持,但并未阻断其诱导。因此,神经网络变形再生重塑的诱导可能不需要节段再生(即,形态发生)。然而,持续的形态发生对于神经回路变形再生基础的细胞和分子机制的长期巩固似乎是必要的。

相似文献

1
Effects of nerve injury and segmental regeneration on the cellular correlates of neural morphallaxis.
J Exp Zool B Mol Dev Evol. 2008 Sep 15;310(6):520-33. doi: 10.1002/jez.b.21224.
3
Rapid neural circuit switching mediated by synaptic plasticity during neural morphallactic regeneration.
Dev Neurobiol. 2012 Sep;72(9):1256-66. doi: 10.1002/dneu.20993. Epub 2012 Jun 21.
7
Gonad establishment during asexual reproduction in the annelid Pristina leidyi.
Dev Biol. 2015 Sep 1;405(1):123-36. doi: 10.1016/j.ydbio.2015.06.001. Epub 2015 Jun 29.
8
Fragmenting oligochaete Enchytraeus japonensis: a new material for regeneration study.
Dev Growth Differ. 1999 Oct;41(5):549-55. doi: 10.1046/j.1440-169x.1999.00455.x.
10
A model for budding in hydra: pattern formation in concentric rings.
J Theor Biol. 2003 May 7;222(1):37-52. doi: 10.1016/s0022-5193(03)00012-2.

引用本文的文献

1
It Cuts Both Ways: An Annelid Model System for the Study of Regeneration in the Laboratory and in the Classroom.
Front Cell Dev Biol. 2021 Nov 29;9:780422. doi: 10.3389/fcell.2021.780422. eCollection 2021.
2
Comparative Aspects of Annelid Regeneration: Towards Understanding the Mechanisms of Regeneration.
Genes (Basel). 2021 Jul 28;12(8):1148. doi: 10.3390/genes12081148.
3
Annotation of nerve cord transcriptome in earthworm .
Genom Data. 2017 Oct 12;14:91-105. doi: 10.1016/j.gdata.2017.10.002. eCollection 2017 Dec.
4
A Stable Thoracic Hox Code and Epimorphosis Characterize Posterior Regeneration in Capitella teleta.
PLoS One. 2016 Feb 19;11(2):e0149724. doi: 10.1371/journal.pone.0149724. eCollection 2016.

本文引用的文献

1
Helical Swimming in a Freshwater Oligochaete.
Biol Bull. 1993 Aug;185(1):1-9. doi: 10.2307/1542125.
2
Regeneration and fragmentation in the Syllidian Polychaetes : Studies on the Syllidae II.
Wilhelm Roux Arch Entwickl Mech Org. 1929 Apr;115(3):542-600. doi: 10.1007/BF02079006.
3
Distribution of segment regeneration ability in the Annelida.
Integr Comp Biol. 2006 Aug;46(4):508-18. doi: 10.1093/icb/icj051. Epub 2006 Jun 30.
4
Unifying principles of regeneration I: Epimorphosis versus morphallaxis.
Dev Growth Differ. 2007 Feb;49(2):73-8. doi: 10.1111/j.1440-169X.2007.00919.x.
5
Regulation of intrinsic neuronal properties for axon growth and regeneration.
Prog Neurobiol. 2007 Jan;81(1):1-28. doi: 10.1016/j.pneurobio.2006.12.001. Epub 2006 Dec 22.
6
Bridging the regeneration gap: genetic insights from diverse animal models.
Nat Rev Genet. 2006 Nov;7(11):873-84. doi: 10.1038/nrg1923.
7
Heat-shock protein 60 is required for blastema formation and maintenance during regeneration.
Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14599-604. doi: 10.1073/pnas.0507408102. Epub 2005 Oct 4.
8
Repair and regeneration of functional synaptic connections: cellular and molecular interactions in the leech.
Cell Mol Neurobiol. 2005 Mar;25(2):441-50. doi: 10.1007/s10571-005-3152-x.
10
The AP-1 transcription factor c-Jun is required for efficient axonal regeneration.
Neuron. 2004 Jul 8;43(1):57-67. doi: 10.1016/j.neuron.2004.06.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验