de Castro Mário, Galea Manuel, Bolfarine Heleno
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970 São Carlos-SP, Brazil.
Stat Med. 2008 Nov 10;27(25):5217-34. doi: 10.1002/sim.3343.
In many epidemiological studies it is common to resort to regression models relating incidence of a disease and its risk factors. The main goal of this paper is to consider inference on such models with error-prone observations and variances of the measurement errors changing across observations. We suppose that the observations follow a bivariate normal distribution and the measurement errors are normally distributed. Aggregate data allow the estimation of the error variances. Maximum likelihood estimates are computed numerically via the EM algorithm. Consistent estimation of the asymptotic variance of the maximum likelihood estimators is also discussed. Test statistics are proposed for testing hypotheses of interest. Further, we implement a simple graphical device that enables an assessment of the model's goodness of fit. Results of simulations concerning the properties of the test statistics are reported. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease.
在许多流行病学研究中,采用将疾病发病率与其风险因素相关联的回归模型是很常见的。本文的主要目标是考虑对这类模型进行推断,其中观测值存在易出错的情况,且测量误差的方差随观测值而变化。我们假设观测值服从二元正态分布,且测量误差呈正态分布。汇总数据可用于估计误差方差。通过期望最大化(EM)算法以数值方式计算最大似然估计值。还讨论了最大似然估计量渐近方差的一致估计。提出了用于检验感兴趣假设的检验统计量。此外,我们实现了一种简单的图形工具,可用于评估模型的拟合优度。报告了关于检验统计量性质的模拟结果。通过世界卫生组织(WHO)心血管疾病监测(MONICA)项目的数据对该方法进行了说明。