Suppr超能文献

在主要研究/验证性研究设计中针对具有协变量测量误差的常见事件的全参数和半参数回归模型。

Fully parametric and semi-parametric regression models for common events with covariate measurement error in main study/validation study designs.

作者信息

Spiegelman D, Casella M

机构信息

Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA.

出版信息

Biometrics. 1997 Jun;53(2):395-409.

PMID:9192443
Abstract

The derivation of the likelihood function for binary data from two types of main study/validation study designs where model covariates are measured with error is elaborated. Rather than limiting consideration to a restricted family of models with convenient mathematical properties, we suggest that empirical considerations, customized to the data at hand, should drive model choices. The joint likelihood function for the main study, in which the covariates are measured with error, and the validation study, in which they are not, is maximized, and estimation and inference proceeds using standard theory. Although the choice of the measurement error model is driven by empirical considerations, the relatively small validation study sizes typically seen may lead to misspecification, resulting in bias in estimation and inference about exposure-disease relationships. By using a nonparametric form for the measurement error model, the resulting semi-parametric methods suggested by Robins, Rotnitzky, and Zhao (1994, Journal of the American Statistical Association 89, 864-866) and Robins, Hsieh, and Newey (1995, Journal of the Royal Statistical Society, Series B 57, 409-424) are free from bias due to misspecification of the measurement error model, trading efficiency for robustness as usual. These fully and semi-parametric methods are illustrated with a detailed example from a main study/validation study of the health effects of occupational exposure to chemotherapeutics among pharmacists (Valanis et al., 1993, American Journal of Hospital Pharmacy 50, 455-462). A constant, prevalence ratio model for common binary events, with gamma covariate measurement error, is derived and empirically verified by the available data. A careful reanalysis of the data, taking measurement error fully into account, leads to a threefold increase in the log relative risk and no loss of statistical power. The semi-parametric estimates are consistent with the parametric results, providing reassurance that important bias due to misspecification of the measurement error model is unlikely.

摘要

阐述了在模型协变量存在测量误差的情况下,从两种主要的主研究/验证研究设计中推导二元数据似然函数的过程。我们建议,不应将考虑局限于具有便利数学性质的受限模型族,而应根据手头数据进行定制的实证考量来驱动模型选择。对协变量存在测量误差的主研究和协变量不存在测量误差的验证研究的联合似然函数进行最大化处理,并使用标准理论进行估计和推断。尽管测量误差模型的选择由实证考量驱动,但通常所见的验证研究规模相对较小可能会导致模型误设,从而在估计和推断暴露-疾病关系时产生偏差。通过使用测量误差模型的非参数形式,罗宾斯、罗特尼茨基和赵(1994年,《美国统计协会杂志》89卷,第864 - 866页)以及罗宾斯、谢和纽厄尔(1995年,《皇家统计学会会刊》,B辑57卷,第409 - 424页)提出的半参数方法不会因测量误差模型的误设而产生偏差,与往常一样以稳健性换取效率。这些全参数和半参数方法通过药剂师职业接触化疗药物对健康影响的主研究/验证研究的详细示例进行说明(瓦拉尼斯等人,1993年,《美国医院药学杂志》50卷,第455 - 462页)。推导了一个针对常见二元事件的常数患病率比模型,该模型具有伽马协变量测量误差,并通过现有数据进行了实证验证。对数据进行仔细的重新分析,充分考虑测量误差,使得对数相对风险增加了三倍,且没有损失统计功效。半参数估计结果与参数估计结果一致,这表明由于测量误差模型误设导致的重要偏差不太可能出现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验