Kucernak Anthony R, Offer Gregory J
Department of Chemistry, Imperial College London, UK.
Phys Chem Chem Phys. 2008 Jul 7;10(25):3699-711. doi: 10.1039/b802816h. Epub 2008 May 14.
The assumption that "OH(ads)" or other oxygen containing species is formed on polycrystalline or nanoparticulate platinum through a fast and reversible process at relatively low potentials is often made. In this paper we discuss the implications of this assumption and the difficulty in reconciling it with experimental phenomena. We show how presenting chrono-amperometric transients as log-log plots for potentials steps in the presence and absence of an adlayer of carbon monoxide on polycrystalline platinum is particularly useful in understanding the time evolution of the CO oxidation reaction. When using log-log plots a clear power law decay can be observed in the transients both in the presence and absence of an adlayer of carbon monoxide. We explain this as an extension of current theory, such that the rate determining step in both cases is the formation of a hydrogen bonded water-OH(ads) network, strongly influenced by anions, and that CO(ads) oxidation occurs, at least in part by the diffusion of OH(ads) through this network. We hypothesize that, at low potentials the formation of OH(ads) at active sites is fast and reversible but that transport of OH(ads) away from those sites may be rate limiting. The assumption that overall OH(ads) formation on platinum is fast and reversible is therefore highly dependent upon the platinum surface and the experimental conditions and it may not be appropriate for polycrystalline surfaces in sulfuric acid. Therefore, although the formation of OH(ads) on platinum in the absence of strongly adsorbing anions on 'ideal' surfaces is almost certainly fast and reversible, on realistic fuel cell relevant surfaces under non-ideal conditions this assumption cannot be made, and instead the formation of an OH(ads) adlayer may be somewhat slow and is associated with the formation of hydrogen bonded water-OH(ads) networks on the surface. We expect this to be a more realistic description for what occurs during CO(ads) oxidation on fuel cell relevant catalysts which are highly heterogeneous and which have a highly defective surface.
人们常常假定,在相对较低的电位下,“OH(吸附)”或其他含氧物种会通过快速且可逆的过程在多晶或纳米颗粒铂上形成。在本文中,我们讨论了这一假设的影响以及将其与实验现象相协调的困难。我们展示了,对于在多晶铂上存在和不存在一氧化碳吸附层的情况下的电位阶跃,将计时电流瞬变呈现为对数-对数图,对于理解一氧化碳氧化反应的时间演变特别有用。使用对数-对数图时,在存在和不存在一氧化碳吸附层的瞬变中都可以观察到明显的幂律衰减。我们将此解释为当前理论的扩展,即两种情况下的速率决定步骤都是受阴离子强烈影响的氢键合水-OH(吸附)网络的形成,并且一氧化碳(吸附)的氧化至少部分是通过OH(吸附)在该网络中的扩散发生的。我们假设,在低电位下,活性位点上OH(吸附)的形成是快速且可逆的,但OH(吸附)从这些位点的传输可能是速率限制因素。因此,关于铂上整体OH(吸附)形成快速且可逆的假设高度依赖于铂表面和实验条件,对于硫酸中的多晶表面可能并不适用。所以,尽管在“理想”表面上不存在强吸附阴离子的情况下,铂上OH(吸附)的形成几乎肯定是快速且可逆的,但在非理想条件下与实际燃料电池相关的表面上,不能做出这一假设,相反,OH(吸附)吸附层的形成可能会有些缓慢,并且与表面上氢键合水-OH(吸附)网络的形成有关。我们预计这对于在高度不均匀且表面高度缺陷的与燃料电池相关的催化剂上一氧化碳(吸附)氧化过程中发生的情况是一种更现实的描述。