Suppr超能文献

将单个G-四链体适体封装在蛋白质纳米腔中。

Encapsulating a single G-quadruplex aptamer in a protein nanocavity.

作者信息

Shim Ji Wook, Gu Li-Qun

机构信息

Department of Biological Engineering and Dalton Cardiovascular Research Center University of Missouri, Columbia, Missouri 65211, USA.

出版信息

J Phys Chem B. 2008 Jul 17;112(28):8354-60. doi: 10.1021/jp0775911. Epub 2008 Jun 19.

Abstract

The alpha-hemolysin (alphaHL) protein pore has many applications in biotechnology. This article describes a single-molecule manipulation system that utilizes the nanocavity enclosed by this pore to noncovalently encapsulate a guest molecule. The guest is the thrombin-binding aptamer (TBA) that folds into the G-quadruplex in the presence of cations. Trapping the G-quadruplex in the nanocavity resulted in characteristic changes to the pore conductance that revealed important molecular processes, including spontaneous unfolding of the quartet structure and translocation of unfolded DNA in the pore. Through detection with Tag-TBA, we localized the G-quadruplex near the entry of the beta-barrel inside the nanocavity, where the molecule vibrates and rotates to different orientations. This guest-nanocavity supramolecular system has potential for helping to understand single-molecule folding and unfolding kinetics.

摘要

α-溶血素(αHL)蛋白孔在生物技术领域有诸多应用。本文介绍了一种单分子操纵系统,该系统利用此孔所包围的纳米腔来非共价包封客体分子。客体是凝血酶结合适体(TBA),它在阳离子存在下折叠成G-四链体。将G-四链体捕获在纳米腔内会导致孔电导发生特征性变化,揭示了重要的分子过程,包括四重结构的自发解折叠以及未折叠DNA在孔内的转运。通过用标记TBA进行检测,我们将G-四链体定位在纳米腔内β-桶入口附近,在此分子振动并旋转至不同方向。这种客体-纳米腔超分子系统有助于理解单分子折叠和解折叠动力学。

相似文献

1
Encapsulating a single G-quadruplex aptamer in a protein nanocavity.
J Phys Chem B. 2008 Jul 17;112(28):8354-60. doi: 10.1021/jp0775911. Epub 2008 Jun 19.
2
Single-molecule detection of folding and unfolding of the G-quadruplex aptamer in a nanopore nanocavity.
Nucleic Acids Res. 2009 Feb;37(3):972-82. doi: 10.1093/nar/gkn968. Epub 2008 Dec 26.
3
Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity.
Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14325-31. doi: 10.1073/pnas.1415944111. Epub 2014 Sep 15.
4
Single-molecule investigation of G-quadruplex using a nanopore sensor.
Methods. 2012 May;57(1):40-6. doi: 10.1016/j.ymeth.2012.03.026. Epub 2012 Apr 2.
6
The effect of l-thymidine, acyclic thymine and 8-bromoguanine on the stability of model G-quadruplex structures.
Biochim Biophys Acta Gen Subj. 2017 May;1861(5 Pt B):1205-1212. doi: 10.1016/j.bbagen.2016.09.030. Epub 2016 Oct 2.
7
Cation Coordination Alters the Conformation of a Thrombin-Binding G-Quadruplex DNA Aptamer That Affects Inhibition of Thrombin.
Nucleic Acid Ther. 2016 Oct;26(5):299-308. doi: 10.1089/nat.2016.0606. Epub 2016 May 9.
8
Raman Scattering Reveals Ion-Dependent G-Quadruplex Formation in the 15-mer Thrombin-Binding Aptamer upon Association with α-Thrombin.
Anal Chem. 2023 Nov 7;95(44):16160-16168. doi: 10.1021/acs.analchem.3c02751. Epub 2023 Oct 23.
9
Duplex/quadruplex oligonucleotides: Role of the duplex domain in the stabilization of a new generation of highly effective anti-thrombin aptamers.
Int J Biol Macromol. 2018 Feb;107(Pt B):1697-1705. doi: 10.1016/j.ijbiomac.2017.10.033. Epub 2017 Oct 10.

引用本文的文献

1
Beta-Barrel Nanopores as Diagnostic Sensors: An Engineering Perspective.
Biosensors (Basel). 2024 Jul 16;14(7):345. doi: 10.3390/bios14070345.
2
Real-time label-free detection of dynamic aptamer-small molecule interactions using a nanopore nucleic acid conformational sensor.
Proc Natl Acad Sci U S A. 2023 Jun 13;120(24):e2108118120. doi: 10.1073/pnas.2108118120. Epub 2023 Jun 5.
3
Computational and Experimental Characterization of rDNA and rRNA G-Quadruplexes.
J Phys Chem B. 2022 Jan 27;126(3):609-619. doi: 10.1021/acs.jpcb.1c08340. Epub 2022 Jan 13.
4
Biological Nanopores: Engineering on Demand.
Life (Basel). 2021 Jan 5;11(1):27. doi: 10.3390/life11010027.
5
Sensing with Nanopores and Aptamers: A Way Forward.
Sensors (Basel). 2020 Aug 11;20(16):4495. doi: 10.3390/s20164495.
6
Biomedical diagnosis perspective of epigenetic detections using alpha-hemolysin nanopore.
AIMS Mater Sci. 2015;2(4):448-472. doi: 10.3934/matersci.2015.4.448. Epub 2015 Nov 16.
7
A Smart Nanopore for Bio-detection.
ECS Trans. 2009;16(41):1-8. doi: 10.1149/1.3104704.
8
Unzipping of A-Form DNA-RNA, A-Form DNA-PNA, and B-Form DNA-DNA in the α-Hemolysin Nanopore.
Biophys J. 2016 Jan 19;110(2):306-314. doi: 10.1016/j.bpj.2015.11.020.
9
Mimicking Ribosomal Unfolding of RNA Pseudoknot in a Protein Channel.
J Am Chem Soc. 2015 Dec 23;137(50):15742-52. doi: 10.1021/jacs.5b07910. Epub 2015 Dec 10.

本文引用的文献

1
A storable encapsulated bilayer chip containing a single protein nanopore.
J Am Chem Soc. 2007 Apr 18;129(15):4701-5. doi: 10.1021/ja068654g. Epub 2007 Mar 22.
2
Single-molecule analysis of DNA-protein complexes using nanopores.
Nat Methods. 2007 Apr;4(4):315-7. doi: 10.1038/nmeth1021. Epub 2007 Mar 4.
3
In vitro synthesis, tetramerization and single channel characterization of virus-encoded potassium channel Kcv.
FEBS Lett. 2007 Mar 6;581(5):1027-34. doi: 10.1016/j.febslet.2007.02.005. Epub 2007 Feb 12.
4
Stochastic sensing on a modular chip containing a single-ion channel.
Anal Chem. 2007 Mar 15;79(6):2207-13. doi: 10.1021/ac0614285. Epub 2007 Feb 9.
5
Supramolecular architectures generated by self-assembly of guanosine derivatives.
Chem Soc Rev. 2007 Feb;36(2):296-313. doi: 10.1039/b600282j. Epub 2006 Nov 7.
6
Multi-nanopore force spectroscopy for DNA analysis.
Biophys J. 2007 Mar 1;92(5):1632-7. doi: 10.1529/biophysj.106.094060. Epub 2006 Dec 8.
7
Temperature-responsive protein pores.
J Am Chem Soc. 2006 Nov 29;128(47):15332-40. doi: 10.1021/ja065827t.
8
Sequencing single molecules of DNA.
Curr Opin Chem Biol. 2006 Dec;10(6):628-37. doi: 10.1016/j.cbpa.2006.10.040. Epub 2006 Nov 20.
10
The thrombin binding aptamer GGTTGGTGTGGTTGG forms a bimolecular guanine tetraplex.
Biochem Biophys Res Commun. 2006 May 26;344(1):50-4. doi: 10.1016/j.bbrc.2006.03.144. Epub 2006 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验