Usta O Berk, Nayhouse Michael, Alexeev Alexander, Balazs Anna C
Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
J Chem Phys. 2008 Jun 21;128(23):235102. doi: 10.1063/1.2940202.
Using computational modeling, we simulate the fluid-driven motion of microcapsules on patterned surfaces to establish guidelines for creating simple microfluidic devices for bioassays and multistage chemical reactions. The microcapsules, which consist of an elastic shell and an encapsulated fluid, model biological cells or polymeric particles. We focus on patterned substrates that encompass chemically adhesive and mechanically compliant domains. By probing the interactions between the microcapsules and these patterned surfaces, we determine the factors that control the movement of the capsules along the substrates. Using this information, we optimize the arrangement of the adhesive and compliant surface domains to create robust systems that effectively discriminate between various soft particles moving through the microchannels and "autonomously" direct certain species to specific locations. These findings could facilitate the fabrication of low-cost, portable microfluidic devices for sorting cells or performing fundamental chemical studies.
通过计算建模,我们模拟了微胶囊在图案化表面上的流体驱动运动,以建立创建用于生物测定和多阶段化学反应的简单微流控装置的指导原则。微胶囊由弹性外壳和封装的流体组成,模拟生物细胞或聚合物颗粒。我们专注于包含化学粘附和机械柔顺区域的图案化基板。通过探究微胶囊与这些图案化表面之间的相互作用,我们确定了控制胶囊沿基板移动的因素。利用这些信息,我们优化了粘附和柔顺表面区域的排列,以创建强大的系统,该系统能够有效地区分通过微通道移动的各种软颗粒,并“自主”地将某些物种引导到特定位置。这些发现有助于制造用于细胞分选或进行基础化学研究的低成本、便携式微流控装置。