Guskos N, Likodimos V, Glenis S, Maryniak M, Baran M, Szymczak R, Roslaniec Z, Kwiatkowska M, Petridis D
Section of Solid State Physics, Department of Physics, University of Athens, Panepistimiopolis, 15 784 Zografos, Athens, Greece.
J Nanosci Nanotechnol. 2008 Apr;8(4):2127-34. doi: 10.1166/jnn.2008.063.
The magnetic properties of gamma-Fe2O3 nanoparticles embedded in a thermoplastic elastomer poly(ether-ester) copolymer by the in situ polycondensation reaction process have been investigated by means of magnetization and ferromagnetic resonance (FMR) measurements at low filler concentrations of 0.1 and 0.3 wt% with the magnetic additive introduced in the polymer matrix in powder and solution form. The magnetic behavior of the magnetopolymeric nanocomposites indicates significant interparticle interaction effects that depend mainly on the dispersion state of the magnetic nanoparticles as well as their concentration, consistent with the variation of the particle microstructure characterized by magnetic aggregates in the nanometer and micron scale for the solution and powder dispersions, respectively. The magnetization and FMR results at different filler concentrations and dispersions show a close correspondence to the relaxation processes of the copolymer, implying the coupling of polymeric and magnetic properties.
通过原位缩聚反应过程将γ-Fe2O3纳米颗粒嵌入热塑性弹性体聚(醚-酯)共聚物中,在低填料浓度为0.1和0.3 wt%的情况下,采用粉末和溶液形式将磁性添加剂引入聚合物基体,通过磁化和铁磁共振(FMR)测量研究了其磁性能。磁性纳米复合材料的磁行为表明存在显著的颗粒间相互作用效应,这主要取决于磁性纳米颗粒的分散状态及其浓度,这与分别以纳米和微米尺度的磁性聚集体为特征的颗粒微观结构变化一致,溶液和粉末分散体中颗粒微观结构变化分别对应纳米和微米尺度的磁性聚集体。不同填料浓度和分散体下的磁化和FMR结果与共聚物的弛豫过程密切相关,这意味着聚合物性能和磁性性能之间存在耦合。