Lima E, Vargas J M, Rechenberg H R, Zysler R D
Centro Atómico Bariloche and Instituto Balseiro, 8400 S. C. de Bariloche, RN, Argentina.
J Nanosci Nanotechnol. 2008 Nov;8(11):5913-20. doi: 10.1166/jnn.2008.244.
We report interparticle interactions effects on the magnetic structure of the surface region in Fe3O4 nanoparticles. For that, we have studied a desirable system composed by Fe3O4 nanoparticles with (d) = 9.3 nm and a narrow size distribution. These particles present an interesting morphology constituted by a crystalline core and a broad (approximately 50% vol.) disordered superficial shell. Two samples were prepared with distinct concentrations of the particles: weakly-interacting particles dispersed in a polymer and strongly-dipolar-interacting particles in a powder sample. M(H, T) measurements clearly show that strong dipolar interparticle interaction modifies the magnetic structure of the structurally disordered superficial shell. Consequently, we have observed drastically distinct thermal behaviours of magnetization and susceptibility comparing weakly- and strongly-interacting samples for the temperature range 2 K < T < 300 K. We have also observed a temperature-field dependence of the hysteresis loops of the dispersed sample that is not observed in the hysteresis loops of the powder one.
我们报道了粒子间相互作用对Fe3O4纳米颗粒表面区域磁结构的影响。为此,我们研究了一个理想的体系,该体系由直径(d)=9.3 nm且尺寸分布狭窄的Fe3O4纳米颗粒组成。这些颗粒呈现出一种有趣的形态,由一个晶核和一个宽阔的(约占体积的50%)无序表面壳层构成。制备了两种具有不同颗粒浓度的样品:分散在聚合物中的弱相互作用颗粒和粉末样品中的强偶极相互作用颗粒。M(H, T)测量清楚地表明,强偶极粒子间相互作用改变了结构无序表面壳层的磁结构。因此,在2 K < T < 300 K的温度范围内,比较弱相互作用和强相互作用样品时,我们观察到了截然不同的磁化和磁化率热行为。我们还观察到了分散样品的磁滞回线的温度-场依赖性,而在粉末样品的磁滞回线中未观察到这种依赖性。