Suppr超能文献

基组对铁配合物自旋态能量学的重要性。

Importance of the basis set for the spin-state energetics of iron complexes.

作者信息

Güell Mireia, Luis Josep M, Solà Miquel, Swart Marcel

机构信息

Departament de Química, Institut de Química Computacional, Campus Montilivi, Universitat de Girona, 17071 Girona, Spain.

出版信息

J Phys Chem A. 2008 Jul 17;112(28):6384-91. doi: 10.1021/jp803441m. Epub 2008 Jun 24.

Abstract

We have performed a systematic investigation of the influence of the basis set on relative spin-state energies for a number of iron compounds. In principle, with an infinitely large basis set, both Slater-type orbital (STO) and Gaussian-type orbital (GTO) series should converge to the same final answer, which is indeed what we observe for both vertical and relaxed spin-state splittings. However, we see throughout the paper that the STO basis sets give consistent and rapidly converging results, while the convergence with respect to the basis set size is much slower for the GTO basis sets. For example, the large GTO basis sets that give good results for the vertical spin-state splittings of compounds 1-3 (6-311+G**, Ahlrichs VTZ2D2P) fail for the relaxed spin-state splittings of compound 4 (where 1 is Fe-(PyPepS)2 (PyPepSH 2 = N-(2-mercaptophenyl)-2-pyridinecarboxamide), 2 is Fe(tsalen)Cl (tsalen = N, N'-ethylenebis-(thiosalicylideneiminato)), 3 is Fe(N(CH2-o-C6H4S) 3)(1-Me-imidazole), and 4 is FeFHOH). Very demanding GTO basis sets like Dunning's correlation-consistent (cc-pVTZ, cc-pVQZ) basis sets are needed to achieve good results for these relaxed spin states. The use of popular (Pople-type) GTO, effective core potentials basis set (ECPB), or mixed ECPB(Fe):GTO(rest) basis sets is shown to lead to substantial deviations (2-10 kcal/mol, 14-24 kcal/mol for 3-21G), in particular for the high spin states that are typically placed at too low energy. Moreover, the use of an effective core potential in the ECPB basis sets results in spin-state splittings that are systematically different from the STO-GTO results.

摘要

我们对多种铁化合物的基组对相对自旋态能量的影响进行了系统研究。原则上,对于无限大的基组,斯莱特型轨道(STO)和高斯型轨道(GTO)系列都应收敛到相同的最终结果,这确实是我们在垂直和弛豫自旋态分裂中所观察到的。然而,我们在整篇论文中看到,STO基组给出了一致且快速收敛的结果,而GTO基组相对于基组大小的收敛则要慢得多。例如,对于化合物1 - 3(6 - 311 + G **,阿尔里奇斯VTZ2D2P)的垂直自旋态分裂能给出良好结果的大GTO基组,对于化合物4的弛豫自旋态分裂则不适用(其中1是Fe - (PyPepS)2(PyPepSH 2 = N - (2 - 巯基苯基)-2 - 吡啶甲酰胺),2是Fe(tsalen)Cl(tsalen = N,N'-亚乙基双-(硫代水杨醛亚胺基)),3是Fe(N(CH2 - o - C6H4S) 3)(1 - 甲基咪唑),4是FeFHOH)。对于这些弛豫自旋态,需要像邓宁的相关一致基组(cc - pVTZ,cc - pVQZ)这样要求很高的GTO基组才能获得良好结果。结果表明,使用流行的(波普尔型)GTO、有效核势基组(ECPB)或混合的ECPB(Fe):GTO(其余部分)基组会导致显著偏差(对于3 - 21G为2 - 10千卡/摩尔,14 - 24千卡/摩尔),特别是对于通常处于过低能量的高自旋态。此外,在ECPB基组中使用有效核势会导致自旋态分裂与STO - GTO结果系统地不同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验