Dawson Wayne K, Jono Ryota, Terada Tohru, Shimizu Kentaro
Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 103-8657, Japan.
Laboratory of Bioinformatics and Protein Engineering International Institute of Molecular and Cell Biology in Warsaw, ul Ks. Trojdena 4, 02-109, Warsaw, Poland.
PLoS One. 2016 Sep 22;11(9):e0162031. doi: 10.1371/journal.pone.0162031. eCollection 2016.
Dioxygenase (dOx) utilizes stereospecific oxidation on aromatic molecules; consequently, dOx has potential applications in bioremediation and stereospecific oxidation synthesis. The reactive components of dOx comprise a Rieske structure Cys2[2Fe-2S]His2 and a non-heme reactive oxygen center (ROC). Between the Rieske structure and the ROC, a universally conserved Asp residue appears to bridge the two structures forming a Rieske-Asp-ROC triad, where the Asp is known to be essential for electron transfer processes. The Rieske and ROC share hydrogen bonds with Asp through their His ligands; suggesting an ideal network for electron transfer via the carboxyl side chain of Asp. Associated with the dOx is an itinerant charge carrying protein Ferredoxin (Fdx). Depending on the specific cognate, Fdx may also possess either the Rieske structure or a related structure known as 4-Cys-[2Fe-2S] (4-Cys). In this study, we extensively explore, at different levels of theory, the behavior of the individual components (Rieske and ROC) and their interaction together via the Asp using a variety of density function methods, basis sets, and a method known as Generalized Ionic Fragment Approach (GIFA) that permits setting up spin configurations manually. We also report results on the 4-Cys structure for comparison. The individual optimized structures are compared with observed spectroscopic data from the Rieske, 4-Cys and ROC structures (where information is available). The separate pieces are then combined together into a large Rieske-Asp-ROC (donor/bridge/acceptor) complex to estimate the overall coupling between individual components, based on changes to the partial charges. The results suggest that the partial charges are significantly altered when Asp bridges the Rieske and the ROC; hence, long range coupling through hydrogen bonding effects via the intercalated Asp bridge can drastically affect the partial charge distributions compared to the individual isolated structures. The results are consistent with a proton coupled electron transfer mechanism.
双加氧酶(dOx)对芳香族分子进行立体特异性氧化;因此,dOx在生物修复和立体特异性氧化合成方面具有潜在应用。dOx的反应组分包括一个 Rieske 结构 Cys2[2Fe-2S]His2 和一个非血红素反应性氧中心(ROC)。在 Rieske 结构和 ROC 之间,一个普遍保守的 Asp 残基似乎桥接了这两个结构,形成了一个 Rieske-Asp-ROC 三联体,其中 Asp 已知对电子转移过程至关重要。Rieske 和 ROC 通过它们的 His 配体与 Asp 共享氢键;这表明通过 Asp 的羧基侧链进行电子转移的理想网络。与 dOx 相关联的是一种游动电荷携带蛋白铁氧化还原蛋白(Fdx)。根据特定的同源物,Fdx 也可能具有 Rieske 结构或一种称为 4-Cys-[2Fe-2S](4-Cys)的相关结构。在本研究中,我们使用多种密度泛函方法、基组以及一种称为广义离子片段方法(GIFA)的方法,在不同理论水平上广泛探索了各个组分(Rieske 和 ROC)的行为以及它们通过 Asp 相互作用的情况,GIFA 允许手动设置自旋构型。我们还报告了 4-Cys 结构的比较结果。将各个优化结构与来自 Rieske、4-Cys 和 ROC 结构(有可用信息的地方)的观测光谱数据进行比较。然后将各个部分组合成一个大的 Rieske-Asp-ROC(供体/桥/受体)复合物,根据部分电荷的变化来估计各个组分之间的整体耦合。结果表明,当 Asp 桥接 Rieske 和 ROC 时,部分电荷会发生显著变化;因此,与各个孤立结构相比,通过插入的 Asp 桥的氢键效应进行的长程耦合会极大地影响部分电荷分布。结果与质子耦合电子转移机制一致。