Suppr超能文献

一种将三维图像数据转换为高精度计算模型的有效方法。

An efficient approach to converting three-dimensional image data into highly accurate computational models.

作者信息

Young P G, Beresford-West T B H, Coward S R L, Notarberardino B, Walker B, Abdul-Aziz A

机构信息

School of Engineering, Computing and Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2008 Sep 13;366(1878):3155-73. doi: 10.1098/rsta.2008.0090.

Abstract

Image-based meshing is opening up exciting new possibilities for the application of computational continuum mechanics methods (finite-element and computational fluid dynamics) to a wide range of biomechanical and biomedical problems that were previously intractable owing to the difficulty in obtaining suitably realistic models. Innovative surface and volume mesh generation techniques have recently been developed, which convert three-dimensional imaging data, as obtained from magnetic resonance imaging, computed tomography, micro-CT and ultrasound, for example, directly into meshes suitable for use in physics-based simulations. These techniques have several key advantages, including the ability to robustly generate meshes for topologies of arbitrary complexity (such as bioscaffolds or composite micro-architectures) and with any number of constituent materials (multi-part modelling), providing meshes in which the geometric accuracy of mesh domains is only dependent on the image accuracy (image-based accuracy) and the ability for certain problems to model material inhomogeneity by assigning the properties based on image signal strength. Commonly used mesh generation techniques will be compared with the proposed enhanced volumetric marching cubes (EVoMaCs) approach and some issues specific to simulations based on three-dimensional image data will be discussed. A number of case studies will be presented to illustrate how these techniques can be used effectively across a wide range of problems from characterization of micro-scaffolds through to head impact modelling.

摘要

基于图像的网格划分正在为计算连续介质力学方法(有限元法和计算流体动力学)应用于广泛的生物力学和生物医学问题开辟令人兴奋的新可能性,这些问题由于难以获得合适的逼真模型,以前难以处理。最近开发了创新的表面和体网格生成技术,这些技术将例如从磁共振成像、计算机断层扫描、显微计算机断层扫描和超声获得的三维成像数据直接转换为适用于基于物理的模拟的网格。这些技术具有几个关键优势,包括能够为任意复杂拓扑结构(如生物支架或复合微结构)以及任意数量的组成材料(多部件建模)稳健地生成网格,提供网格域的几何精度仅取决于图像精度(基于图像的精度)的网格,以及通过基于图像信号强度分配属性来对某些问题的材料不均匀性进行建模的能力。将常用的网格生成技术与提出的增强型体步进立方体(EVoMaCs)方法进行比较,并讨论基于三维图像数据的模拟所特有的一些问题。将展示一些案例研究,以说明这些技术如何能有效地用于从微支架表征到头部撞击建模等广泛问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验