Suppr超能文献

使用电子综合监测系统确定降级病房患者心肺功能不稳定的发生率。

Defining the incidence of cardiorespiratory instability in patients in step-down units using an electronic integrated monitoring system.

作者信息

Hravnak Marilyn, Edwards Leslie, Clontz Amy, Valenta Cynthia, Devita Michael A, Pinsky Michael R

机构信息

School of Nursing, University of Pittsburgh, 336 Victoria Bldg, 3500 Victoria St, Pittsburgh, PA 15261, USA.

出版信息

Arch Intern Med. 2008 Jun 23;168(12):1300-8. doi: 10.1001/archinte.168.12.1300.

Abstract

BACKGROUND

To our knowledge, detection of cardiorespiratory instability using noninvasive monitoring via electronic integrated monitoring systems (IMSs) in intermediate or step-down units (SDUs) has not been described. We undertook this study to characterize respiratory status in an SDU population, to define features of cardiorespiratory instability, and to evaluate an IMS index value that should trigger medical emergency team (MET) activation.

METHODS

This descriptive, prospective, single-blinded, observational study evaluated all patients in a 24-bed SDU in a university medical center during 8 weeks from November 16, 2006, to January 11, 2007. An IMS (BioSign; OBS Medical, Carmel, Indiana) was inserted into the standard noninvasive hardwired monitoring system and used heart rate, blood pressure, respiratory rate, and peripheral oxygen saturation by pulse oximetry to develop a single neural networked signal, or BioSign Index (BSI). Data were analyzed for cardiorespiratory instability according to BSI trigger value and local MET activation criteria. Staff were blinded to BSI data collected in 326 patients (total census).

RESULTS

Data for 18 248 hours of continuous monitoring were captured. Data for peripheral oxygen saturation by pulse oximetry were absent in 30% of monitored hours despite being a standard of care. Cardiorespiratory status in most patients (243 of 326 [74.5%]) was stable throughout their SDU stay, and instability in the remaining patients (83 of 326 [25%]) was exhibited infrequently. We recorded 111 MET activation criteria events caused by cardiorespiratory instability in 59 patients, but MET activation for this cause occurred in only 7 patients. All MET events were detected by BSI in advance (mean, 6.3 hours) in a bimodal distribution (>6 hours and < or =45 minutes).

CONCLUSIONS

Cardiorespiratory instability, while uncommon and often unrecognized, was preceded by elevation of the IMS index. Continuous noninvasive monitoring augmented by IMS provides sensitive detection of early instability in patients in SDUs.

摘要

背景

据我们所知,在中级或逐步降级护理单元(SDU)中,利用电子集成监测系统(IMS)通过无创监测来检测心肺功能不稳定的情况尚未见报道。我们开展这项研究,旨在描述SDU患者群体的呼吸状况,确定心肺功能不稳定的特征,并评估一个应触发医疗急救团队(MET)启动的IMS指数值。

方法

这项描述性、前瞻性、单盲观察性研究对一所大学医学中心一个拥有24张床位的SDU在2006年11月16日至2007年1月11日的8周内的所有患者进行了评估。将一个IMS(BioSign;OBS Medical,印第安纳州卡梅尔)接入标准的无创有线监测系统,并利用心率、血压、呼吸频率和脉搏血氧饱和度来生成一个单一的神经网络信号,即BioSign指数(BSI)。根据BSI触发值和当地MET启动标准对心肺功能不稳定的数据进行分析。工作人员对326例患者(总普查数)收集的BSI数据不知情。

结果

共采集了18248小时的连续监测数据。尽管脉搏血氧饱和度是护理标准,但在30%的监测小时数中缺少该数据。大多数患者(326例中的243例[74.5%])在整个SDU住院期间心肺功能状态稳定,其余患者(326例中的83例[25%])很少出现不稳定情况。我们记录了59例患者因心肺功能不稳定导致的111次MET启动标准事件,但仅7例患者因此原因启动了MET。所有MET事件均被BSI提前检测到(平均6.3小时),呈双峰分布(>6小时和<或=45分钟)。

结论

心肺功能不稳定虽不常见且常未被识别,但在IMS指数升高之前就已出现。通过IMS增强的连续无创监测能敏感地检测出SDU患者早期的不稳定情况。

相似文献

2
Cardiorespiratory instability before and after implementing an integrated monitoring system.
Crit Care Med. 2011 Jan;39(1):65-72. doi: 10.1097/CCM.0b013e3181fb7b1c.
3
Monitoring cardiorespiratory instability: Current approaches and implications for nursing practice.
Intensive Crit Care Nurs. 2016 Jun;34:73-80. doi: 10.1016/j.iccn.2015.11.005. Epub 2016 Feb 28.
4
Characteristics of patients with cardiorespiratory instability in a step-down unit.
Am J Crit Care. 2012 Sep;21(5):344-50. doi: 10.4037/ajcc2012797.
5
Cardiorespiratory instability in monitored step-down unit patients: using cluster analysis to identify patterns of change.
J Clin Monit Comput. 2018 Feb;32(1):117-126. doi: 10.1007/s10877-017-0001-7. Epub 2017 Feb 22.
6
Risk for Cardiorespiratory Instability Following Transfer to a Monitored Step-Down Unit.
Respir Care. 2017 Apr;62(4):415-422. doi: 10.4187/respcare.05001. Epub 2017 Jan 24.
7
Integrated monitoring and analysis for early warning of patient deterioration.
Br J Anaesth. 2006 Jul;97(1):64-8. doi: 10.1093/bja/ael113. Epub 2006 May 17.
8
Temporal distribution of instability events in continuously monitored step-down unit patients: implications for Rapid Response Systems.
Resuscitation. 2015 Apr;89:99-105. doi: 10.1016/j.resuscitation.2015.01.015. Epub 2015 Jan 28.
9
Dynamic and Personalized Risk Forecast in Step-Down Units. Implications for Monitoring Paradigms.
Ann Am Thorac Soc. 2017 Mar;14(3):384-391. doi: 10.1513/AnnalsATS.201611-905OC.
10
Pulse oximetry monitoring outside the intensive care unit: progress or problem?
Ann Intern Med. 1991 Sep 15;115(6):450-4. doi: 10.7326/0003-4819-115-6-450.

引用本文的文献

2
Automatic COVID-19 severity assessment from HRV.
Sci Rep. 2023 Jan 31;13(1):1713. doi: 10.1038/s41598-023-28681-2.
3
Altered Heart Rate Variability Early in ICU Admission Differentiates Critically Ill Coronavirus Disease 2019 and All-Cause Sepsis Patients.
Crit Care Explor. 2021 Dec 2;3(12):e0570. doi: 10.1097/CCE.0000000000000570. eCollection 2021 Dec.
5
Value-based Healthcare: Can Artificial Intelligence Provide Value in Orthopaedic Surgery?
Clin Orthop Relat Res. 2019 Aug;477(8):1777-1780. doi: 10.1097/CORR.0000000000000873.
6
Regulation of predictive analytics in medicine.
Science. 2019 Feb 22;363(6429):810-812. doi: 10.1126/science.aaw0029.
7
Utilisation of Intermediate Care Units: A Systematic Review.
Crit Care Res Pract. 2017;2017:8038460. doi: 10.1155/2017/8038460. Epub 2017 Jul 9.
8
Cardiorespiratory instability in monitored step-down unit patients: using cluster analysis to identify patterns of change.
J Clin Monit Comput. 2018 Feb;32(1):117-126. doi: 10.1007/s10877-017-0001-7. Epub 2017 Feb 22.
9
Risk for Cardiorespiratory Instability Following Transfer to a Monitored Step-Down Unit.
Respir Care. 2017 Apr;62(4):415-422. doi: 10.4187/respcare.05001. Epub 2017 Jan 24.
10
Failure to activate the in-hospital emergency team: causes and outcomes.
Rev Bras Ter Intensiva. 2016 Oct-Dec;28(4):420-426. doi: 10.5935/0103-507X.20160075.

本文引用的文献

2
Reproducibility of physiological track-and-trigger warning systems for identifying at-risk patients on the ward.
Intensive Care Med. 2007 Apr;33(4):619-24. doi: 10.1007/s00134-006-0516-8. Epub 2007 Jan 18.
3
Frequency and pattern of medical emergency team activation among medical cardiology patient care units.
Crit Care Nurs Q. 2007 Jan-Mar;30(1):81-4. doi: 10.1097/00002727-200701000-00010.
4
5
The value of Modified Early Warning Score (MEWS) in surgical in-patients: a prospective observational study.
Ann R Coll Surg Engl. 2006 Oct;88(6):571-5. doi: 10.1308/003588406X130615.
6
Findings of the first consensus conference on medical emergency teams.
Crit Care Med. 2006 Sep;34(9):2463-78. doi: 10.1097/01.CCM.0000235743.38172.6E.
7
Integrated monitoring and analysis for early warning of patient deterioration.
Br J Anaesth. 2006 Jul;97(1):64-8. doi: 10.1093/bja/ael113. Epub 2006 May 17.
8
Impact of a critical care outreach team on critical care readmissions and mortality.
Acta Anaesthesiol Scand. 2004 Oct;48(9):1096-100. doi: 10.1111/j.1399-6576.2004.00509.x.
9
Use of medical emergency team responses to reduce hospital cardiopulmonary arrests.
Qual Saf Health Care. 2004 Aug;13(4):251-4. doi: 10.1136/qhc.13.4.251.
10
Introducing an early warning scoring system in a district general hospital.
Nurs Crit Care. 2004 May-Jun;9(3):98-103. doi: 10.1111/j.1362-1017.2004.0063.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验