Suppr超能文献

Characterization of an outward K+ current in freshly dispersed cerebral arterial muscle cells.

作者信息

Bonnet P, Rusch N J, Harder D R

机构信息

Department of Physiology, Medical College of Wisconsin, Milwaukee 53226.

出版信息

Pflugers Arch. 1991 Apr;418(3):292-6. doi: 10.1007/BF00370529.

Abstract

This study was carried out to define some of the cellular ionic mechanisms controlling cerebral arterial muscle. Muscle cells were enzymatically dispersed from cat cerebral arteries. Cells were dialyzed and voltage-clamped using patch pipettes and whole-cell currents measured. Using pipette solutions allowing us to record K+ currents we identified an outward current elicited by depolarizing voltage steps beyond -20 mV. This outward current exhibited properties of delayed outward rectification having a peak macroscopic current at +90 mV of 504 +/- 236 pA. The current was sensitive to 4-aminopyridine, but was sensitive to tetraethylammonium only at very high doses. When CsCl was in the recording pipette, macroscopic outward currents could not be recorded. Variations in the extracellular Ca2+ concentration from 0.5 to 5.0 mM had no effect on current amplitude or voltage dependence; similarly the Ca2+ channel blockers nifedipine and Mn2+ were without effect on this outward current. The current inactivated slowly with no decay seen even with 3-s command pulses. Repetitive voltage pulses from -60 to +90 mV at a frequency of 1 Hz resulted in "cumulative reduction", depressing peak current by 60% after ten pulses. Upon reduction of pH from 7.43 to 7.20 we observed a 350% increase in peak outward current in 7 of 12 cells studied in this regard. Thus, the cellular mechanism responsible for cerebral vascular dilation to acidosis and/or hypercapnia may involve an increase in outward K+ current.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验