Suppr超能文献

组蛋白H3球状核心中赖氨酸-56位点的乙酰化作用在转录激活过程中促进染色质解聚。

Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation.

作者信息

Williams Stephanie K, Truong David, Tyler Jessica K

机构信息

Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.

出版信息

Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9000-5. doi: 10.1073/pnas.0800057105. Epub 2008 Jun 24.

Abstract

Promoter chromatin disassembly is a widely used mechanism to regulate eukaryotic transcriptional induction. Delaying histone H3/H4 removal from the yeast PHO5 promoter also leads to delayed removal of histones H2A/H2B, suggesting a constant equilibrium of assembly and disassembly of H2A/H2B, whereas H3/H4 disassembly is the highly regulated step. Toward understanding how H3/H4 disassembly is regulated, we observe a drastic increase in the levels of histone H3 acetylated on lysine-56 (K56ac) during promoter chromatin disassembly. Indeed, promoter chromatin disassembly is driven by Rtt109 and Asf1-dependent acetylation of H3 K56. Conversely, promoter chromatin reassembly during transcriptional repression is accompanied by decreased levels of histone H3 acetylated on lysine-56, and a mutation that prevents K56 acetylation increases the rate of transcriptional repression. As such, H3 K56 acetylation drives chromatin toward the disassembled state during transcriptional activation, whereas loss of H3 K56 acetylation drives the chromatin toward the assembled state.

摘要

启动子染色质解聚是一种广泛用于调控真核生物转录诱导的机制。延迟从酵母PHO5启动子上移除组蛋白H3/H4也会导致组蛋白H2A/H2B的移除延迟,这表明H2A/H2B的组装和解聚存在持续的平衡,而H3/H4的解聚是高度受调控的步骤。为了理解H3/H4解聚是如何被调控的,我们观察到在启动子染色质解聚过程中,赖氨酸56(K56ac)乙酰化的组蛋白H3水平急剧增加。事实上,启动子染色质解聚是由Rtt109和Asf1依赖的H3 K56乙酰化驱动的。相反,转录抑制过程中的启动子染色质重新组装伴随着赖氨酸56乙酰化的组蛋白H3水平降低,并且阻止K56乙酰化的突变会增加转录抑制的速率。因此,H3 K56乙酰化在转录激活过程中驱使染色质趋向解聚状态,而H3 K56乙酰化的缺失则驱使染色质趋向组装状态。

相似文献

1
Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation.
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9000-5. doi: 10.1073/pnas.0800057105. Epub 2008 Jun 24.
2
Promoter regulation by distinct mechanisms of functional interplay between lysine acetylase Rtt109 and histone chaperone Asf1.
Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19599-604. doi: 10.1073/pnas.1111501108. Epub 2011 Nov 21.
5
The histone chaperone anti-silencing function 1 stimulates the acetylation of newly synthesized histone H3 in S-phase.
J Biol Chem. 2007 Jan 12;282(2):1334-40. doi: 10.1074/jbc.M608025200. Epub 2006 Nov 15.
6
Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109.
Mol Cell Biol. 2008 Jul;28(13):4342-53. doi: 10.1128/MCB.00182-08. Epub 2008 May 5.
7
Structure of the Rtt109-AcCoA/Vps75 complex and implications for chaperone-mediated histone acetylation.
Structure. 2011 Feb 9;19(2):221-31. doi: 10.1016/j.str.2010.12.012. Epub 2011 Jan 20.
8
Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis.
Proc Natl Acad Sci U S A. 2006 May 2;103(18):6988-93. doi: 10.1073/pnas.0601676103. Epub 2006 Apr 20.
10
The histone chaperone Asf1 increases the rate of histone eviction at the yeast PHO5 and PHO8 promoters.
J Biol Chem. 2006 Mar 3;281(9):5539-45. doi: 10.1074/jbc.M513340200. Epub 2006 Jan 4.

引用本文的文献

1
Hmo1: A versatile member of the high mobility group box family of chromosomal architecture proteins.
World J Biol Chem. 2024 Aug 12;15(1):97938. doi: 10.4331/wjbc.v15.i1.97938.
2
3
White-opaque switching in : cell biology, regulation, and function.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0004322. doi: 10.1128/mmbr.00043-22. Epub 2024 Mar 28.
5
Yeast transcription factor Msn2 binds to G4 DNA.
Nucleic Acids Res. 2023 Oct 13;51(18):9643-9657. doi: 10.1093/nar/gkad684.
6
Histone H3 serine-57 is a CHK1 substrate whose phosphorylation affects DNA repair.
Nat Commun. 2023 Aug 22;14(1):5104. doi: 10.1038/s41467-023-40843-4.
7
Assignment of structural transitions during mechanical unwrapping of nucleosomes and their disassembly products.
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2206513119. doi: 10.1073/pnas.2206513119. Epub 2022 Aug 8.
9
Control of Gene Expression via the Yeast CWI Pathway.
Int J Mol Sci. 2022 Feb 4;23(3):1791. doi: 10.3390/ijms23031791.
10
Potential functions of histone H3.3 lysine 56 acetylation in mammals.
Epigenetics. 2022 May;17(5):498-517. doi: 10.1080/15592294.2021.1922198. Epub 2021 May 24.

本文引用的文献

1
Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast.
Mol Cell. 2007 Sep 21;27(6):890-900. doi: 10.1016/j.molcel.2007.07.021.
2
Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity.
J Biol Chem. 2007 Sep 28;282(39):28587-28596. doi: 10.1074/jbc.M702496200. Epub 2007 Aug 9.
5
Histone tails and the H3 alphaN helix regulate nucleosome mobility and stability.
Mol Cell Biol. 2007 Jun;27(11):4037-48. doi: 10.1128/MCB.02229-06. Epub 2007 Mar 26.
6
The Rtt109-Vps75 histone acetyltransferase complex acetylates non-nucleosomal histone H3.
J Biol Chem. 2007 May 11;282(19):14158-64. doi: 10.1074/jbc.M700611200. Epub 2007 Mar 16.
7
Dynamics of replication-independent histone turnover in budding yeast.
Science. 2007 Mar 9;315(5817):1405-8. doi: 10.1126/science.1134053.
8
Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes.
Mol Cell. 2007 Mar 9;25(5):703-12. doi: 10.1016/j.molcel.2007.02.006. Epub 2007 Feb 22.
9
Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.
Nature. 2007 Apr 12;446(7137):806-10. doi: 10.1038/nature05649. Epub 2007 Feb 21.
10
Transcriptional regulation by chromatin disassembly and reassembly.
Curr Opin Genet Dev. 2007 Apr;17(2):88-93. doi: 10.1016/j.gde.2007.02.001. Epub 2007 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验