Suppr超能文献

硫氧还蛋白使过氧化物酶中的半胱氨酸亚磺酸还原,该过程直接通过亚磺酸磷酰酯中间体进行。

Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate.

作者信息

Jönsson Thomas J, Murray Michael S, Johnson Lynnette C, Lowther W Todd

机构信息

Center for Structural Biology and Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.

出版信息

J Biol Chem. 2008 Aug 29;283(35):23846-51. doi: 10.1074/jbc.M803244200. Epub 2008 Jun 24.

Abstract

Sulfiredoxin (Srx) catalyzes a novel enzymatic reaction, the reduction of protein cysteine sulfinic acid, Cys-SO(2)(-). This reaction is unique to the typical 2-Cys peroxiredoxins (Prx) and plays a role in peroxide-mediated signaling by regulating the activity of Prxs. Two mechanistic schemes have been proposed that differ regarding the first step of the reaction. This step involves either the direct transfer of the gamma-phosphate of ATP to the Prx molecule or through Srx acting as a phosphorylated intermediary. In an effort to clarify this step of the Srx reaction, we have determined the 1.8A resolution crystal structure of Srx in complex with ATP and Mg(2+). This structure reveals the role of the Mg(2+) ion to position the gamma-phosphate toward solvent, thus preventing an in-line attack by the catalytic residue Cys-99 of Srx. A model of the quaternary complex is consistent with this proposal. Furthermore, phosphorylation studies on several site-directed mutants of Srx and Prx, including the Prx-Asp mimic of the Prx-SO(2)(-) species, support a mechanism where phosphorylation of Prx-SO(2)(-) is the first chemical step.

摘要

硫氧还蛋白(Srx)催化一种新型酶促反应,即蛋白质半胱氨酸亚磺酸(Cys-SO(2)(-))的还原反应。该反应是典型的双半胱氨酸过氧化物酶(Prx)所特有的,并且通过调节Prx的活性在过氧化物介导的信号传导中发挥作用。已经提出了两种反应机制,它们在反应的第一步有所不同。这一步要么涉及ATP的γ-磷酸基团直接转移到Prx分子上,要么通过Srx作为磷酸化中间体来进行。为了阐明Srx反应的这一步骤,我们确定了与ATP和Mg(2+)形成复合物的Srx的晶体结构,分辨率为1.8埃。该结构揭示了Mg(2+)离子将γ-磷酸基团定位朝向溶剂的作用,从而防止Srx的催化残基Cys-99进行直接攻击。四元复合物的模型与该提议一致。此外,对Srx和Prx的几个定点突变体进行的磷酸化研究,包括Prx-SO(2)(-)物种的Prx-天冬氨酸模拟物,支持了Prx-SO(2)(-)的磷酸化是第一个化学步骤的机制。

相似文献

4
Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin.
J Biol Chem. 2006 May 19;281(20):14400-7. doi: 10.1074/jbc.M511082200. Epub 2006 Mar 24.
6
Sulfiredoxin Translocation into Mitochondria Plays a Crucial Role in Reducing Hyperoxidized Peroxiredoxin III.
J Biol Chem. 2009 Mar 27;284(13):8470-7. doi: 10.1074/jbc.M808981200. Epub 2009 Jan 28.
8
Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins.
J Biol Chem. 2005 Feb 4;280(5):3125-8. doi: 10.1074/jbc.C400496200. Epub 2004 Dec 8.
9
Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin.
Antioxid Redox Signal. 2011 Jul 1;15(1):99-109. doi: 10.1089/ars.2010.3564. Epub 2010 Dec 17.

引用本文的文献

1
Cysteine sulfinic acid and sulfinylated peptides.
RSC Chem Biol. 2025 May 9. doi: 10.1039/d5cb00040h.
2
Unveiling the multifaceted domain polymorphism of the Menshen antiphage system.
Nucleic Acids Res. 2025 May 10;53(9). doi: 10.1093/nar/gkaf357.
6
Structural preferences of cysteine sulfinic acid: The sulfinate engages in multiple local interactions with the peptide backbone.
Free Radic Biol Med. 2020 Feb 20;148:96-107. doi: 10.1016/j.freeradbiomed.2019.12.030. Epub 2019 Dec 26.
7
Self-organization of centromeres by the ParB CTP hydrolase.
Science. 2019 Nov 29;366(6469):1129-1133. doi: 10.1126/science.aay3965. Epub 2019 Oct 24.
8
Insights into the respiratory chain and oxidative stress.
Biosci Rep. 2018 Oct 2;38(5). doi: 10.1042/BSR20171492. Print 2018 Oct 31.
9
SbnI is a free serine kinase that generates -phospho-l-serine for staphyloferrin B biosynthesis in .
J Biol Chem. 2018 Apr 20;293(16):6147-6160. doi: 10.1074/jbc.RA118.001875. Epub 2018 Feb 26.
10
The Architecture of Thiol Antioxidant Systems among Invertebrate Parasites.
Molecules. 2017 Feb 10;22(2):259. doi: 10.3390/molecules22020259.

本文引用的文献

1
Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses.
Nat Neurosci. 2008 Apr;11(4):476-87. doi: 10.1038/nn2071. Epub 2008 Mar 23.
2
Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace.
Nature. 2008 Jan 3;451(7174):98-101. doi: 10.1038/nature06415.
3
The peroxiredoxin repair proteins.
Subcell Biochem. 2007;44:115-41. doi: 10.1007/978-1-4020-6051-9_6.
5
Cell signaling. H2O2, a necessary evil for cell signaling.
Science. 2006 Jun 30;312(5782):1882-3. doi: 10.1126/science.1130481.
6
Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin.
J Biol Chem. 2006 May 19;281(20):14400-7. doi: 10.1074/jbc.M511082200. Epub 2006 Mar 24.
7
A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway.
Proc Natl Acad Sci U S A. 2005 Jun 21;102(25):8875-80. doi: 10.1073/pnas.0503251102. Epub 2005 Jun 13.
8
Structural basis for the retroreduction of inactivated peroxiredoxins by human sulfiredoxin.
Biochemistry. 2005 Jun 21;44(24):8634-42. doi: 10.1021/bi050131i.
10
Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II.
Nature. 2005 May 19;435(7040):347-53. doi: 10.1038/nature03587.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验