Lu Zhongping, Sack Michael N
Translational Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1454, USA.
J Biol Chem. 2008 Aug 22;283(34):23410-8. doi: 10.1074/jbc.M801236200. Epub 2008 Jun 24.
Hypoxia induces oxidative damage in skeletal muscle. Uncoupling protein 3 (UCP3) is the skeletal muscle enriched uncoupling protein and has previously been shown to confer resistance against oxidative stress. We show that hypoxia robustly up-regulates skeletal muscle UCP3 and that the absence of UCP3 in primary skeletal myocytes exacerbates hypoxia-induced reactive oxygen species generation. In this context, we reasoned that the investigation of the regulation of UCP3 may identify novel hypoxia-responsive regulatory pathways that modulate intrinsic anti-oxidant defenses. By screening a transcription factor array of 704 full-length cDNAs in murine C2C12 myoblasts following cotransfection of a murine UCP3 promoter-luciferase construct and myoD we identified numerous candidate regulatory factors that up-regulate UCP3. Active transcription factor-1 (ATF-1) was identified, and as this transcription factor is a known component of a multiprotein hypoxia-induced regulatory complex, we explored its role in hypoxia-mediated UCP3 up-regulation. Site-directed mutagenesis and chromatin immunoprecipitation assays identify a 10-bp region required for ATF-1 induction of UCP3 promoter activity. Hypoxia promotes the phosphorylation of ATF-1, and the knockdown of ATF-1 by shRNA prevents hypoxia-mediated up-regulation of UCP3. Pharmacologic inhibition of p38 MAP kinase prevents both hypoxia-mediated ATF-1 phosphorylation and UCP3 up-regulation. PKA signaling does not modulate hypoxia-induced UCP3 up-regulation and neither does HIF-1alpha activation by cobalt chloride. In conclusion, ATF-1, via p38 MAP kinase activation, functions as a novel regulatory pathway driving UCP3 expression. These data reinforce the role of ATF-1 as a hypoxia-responsive trans-activator and identifies a novel regulatory program that may modulate cellular responses to oxygen-deficit.
缺氧会诱导骨骼肌发生氧化损伤。解偶联蛋白3(UCP3)是一种在骨骼肌中大量存在的解偶联蛋白,此前已证明它能赋予细胞抵抗氧化应激的能力。我们发现,缺氧能显著上调骨骼肌中的UCP3,并且原代骨骼肌细胞中缺乏UCP3会加剧缺氧诱导的活性氧生成。在此背景下,我们推测对UCP3调控机制的研究可能会发现新的缺氧反应性调控途径,这些途径可调节内在的抗氧化防御机制。通过在小鼠C2C12成肌细胞中共转染小鼠UCP3启动子 - 荧光素酶构建体和肌细胞生成素(myoD)后,筛选704个全长cDNA的转录因子阵列,我们鉴定出了许多上调UCP3的候选调控因子。其中鉴定出了活性转录因子 - 1(ATF - 1),由于该转录因子是多蛋白缺氧诱导调控复合物的已知组成部分,我们探讨了它在缺氧介导的UCP3上调中的作用。定点诱变和染色质免疫沉淀试验确定了ATF - 1诱导UCP3启动子活性所需的一个10bp区域。缺氧促进ATF - 1的磷酸化,而通过短发夹RNA(shRNA)敲低ATF - 1可阻止缺氧介导的UCP3上调。p38丝裂原活化蛋白激酶(MAP激酶)的药理学抑制可同时阻止缺氧介导的ATF - 1磷酸化和UCP3上调。蛋白激酶A(PKA)信号传导不调节缺氧诱导的UCP3上调,氯化钴激活缺氧诱导因子 - 1α(HIF - 1α)也不调节。总之,ATF - 1通过激活p38 MAP激酶,作为驱动UCP3表达的新调控途径发挥作用。这些数据强化了ATF - 1作为缺氧反应性反式激活因子的作用,并确定了一个可能调节细胞对缺氧反应的新调控程序。