Chattopadhyay Munmun, Mata Marina, Fink David J
Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-0316, USA.
J Neurosci. 2008 Jun 25;28(26):6652-8. doi: 10.1523/JNEUROSCI.5530-07.2008.
The Na(V)1.7 tetrodotoxin-sensitive voltage-gated sodium channel isoform plays a critical role in nociception. In rodent models of diabetic neuropathy, increased Na(V)1.7 in dorsal root ganglia (DRG) neurons correlates with the emergence of pain-related behaviors characteristic of painful diabetic neuropathy (PDN). We examined the effect of transgene-mediated expression of enkephalin on pain-related behaviors and their biochemical correlates in DRG neurons. Transfection of DRG neurons by subcutaneous inoculation of a herpes simplex virus-based vector expressing proenkephalin reversed nocisponsive behavioral responses to heat, cold, and mechanical pressure characteristic of PDN. Vector-mediated enkephalin production in vivo prevented the increase in DRG Na(V)1.7 observed in PDN, an effect that correlated with inhibition of phosphorylation of p38 MAPK (mitogen-activated protein kinase) and protein kinase C (PKC). Primary DRG neurons in vitro exposed to 45 mm glucose for 18 h also demonstrated an increase in Na(V)1.7 and increased phosphorylation of p38 and PKC; these changes were prevented by transfection in vitro with the enkephalin-expressing vector. The effect of hyperglycemia on Na(V)1.7 production in vitro was mimicked by exposure to PMA and blocked by the myristolated PKC inhibitor 20-28 or the p38 inhibitor SB202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole]; the effect of vector-mediated enkephalin on Na(V)1.7 levels was prevented by naltrindole. The results of these studies suggest that activation of the presynaptic delta-opioid receptor by enkephalin prevents the increase in neuronal Na(V)1.7 in DRG through inhibition of PKC and p38. These results establish a novel interaction between the delta-opioid receptor and voltage-gated sodium channels.
Na(V)1.7 河豚毒素敏感型电压门控钠通道亚型在伤害感受中起关键作用。在糖尿病性神经病变的啮齿动物模型中,背根神经节(DRG)神经元中Na(V)1.7 的增加与疼痛性糖尿病神经病变(PDN)特有的疼痛相关行为的出现相关。我们研究了转基因介导的脑啡肽表达对DRG神经元中疼痛相关行为及其生化关联的影响。通过皮下接种表达前脑啡肽的基于单纯疱疹病毒的载体对DRG神经元进行转染,可逆转对PDN特有的热、冷和机械压力的伤害性反应行为。载体介导的脑啡肽在体内产生可防止在PDN中观察到的DRG Na(V)1.7增加,这一效应与抑制p38丝裂原活化蛋白激酶(MAPK)和蛋白激酶C(PKC)的磷酸化相关。体外暴露于45 mM葡萄糖18小时的原代DRG神经元也显示Na(V)1.7增加以及p38和PKC磷酸化增加;这些变化可通过用表达脑啡肽的载体进行体外转染来预防。高血糖对体外Na(V)1.7产生的影响可通过暴露于佛波酯(PMA)模拟,并被肉豆蔻酰化的PKC抑制剂20 - 28或p38抑制剂SB202190 [4-(4-氟苯基)-2-(4-羟基苯基)-5-(4-吡啶基)1H-咪唑]阻断;载体介导的脑啡肽对Na(V)1.7水平的影响可被纳曲吲哚阻断。这些研究结果表明,脑啡肽对突触前δ阿片受体的激活通过抑制PKC和p38来防止DRG中神经元Na(V)1.7的增加。这些结果建立了δ阿片受体与电压门控钠通道之间的新型相互作用。