Bertram Martin, Duchaineau Mark A, Hamann Bernd, Joy Kenneth I
FB Informatik, University of Kaiserslautern, Kauserslautern, Germany.
IEEE Trans Vis Comput Graph. 2004 May-Jun;10(3):326-38. doi: 10.1109/TVCG.2004.1272731.
We present a new construction of lifted biorthogonal wavelets on surfaces of arbitrary two-manifold topology for compression and multiresolution representation. Our method combines three approaches: subdivision surfaces of arbitrary topology, B-spline wavelets, and the lifting scheme for biorthogonal wavelet construction. The simple building blocks of our wavelet transform are local lifting operations performed on polygonal meshes with subdivision hierarchy. Starting with a coarse, irregular polyhedral base mesh, our transform creates a subdivision hierarchy of meshes converging to a smooth limit surface. At every subdivision level, geometric detail can be expanded from wavelet coefficients and added to the surface. We present wavelet constructions for bilinear, bicubic, and biquintic B-Spline subdivision. While the bilinear and bicubic constructions perform well in numerical experiments, the biquintic construction turns out to be unstable. For lossless compression, our transform can be computed in integer arithmetic, mapping integer coordinates of control points to integer wavelet coefficients. Our approach provides a highly efficient and progressive representation for complex geometries of arbitrary topology.
我们提出了一种在任意二维流形拓扑表面上构建提升双正交小波的新方法,用于压缩和多分辨率表示。我们的方法结合了三种途径:任意拓扑的细分曲面、B样条小波以及双正交小波构造的提升方案。我们小波变换的简单构建块是在具有细分层次结构的多边形网格上执行的局部提升操作。从一个粗糙的、不规则的多面体基础网格开始,我们的变换创建了一个收敛到光滑极限曲面的网格细分层次结构。在每个细分级别,可以从小波系数扩展几何细节并添加到曲面上。我们给出了双线性、双三次和双五次B样条细分的小波构造。虽然双线性和双三次构造在数值实验中表现良好,但双五次构造结果是不稳定的。对于无损压缩,我们的变换可以用整数运算来计算,将控制点的整数坐标映射到整数小波系数。我们的方法为任意拓扑的复杂几何形状提供了一种高效且渐进的表示。