Suppr超能文献

基于定制的双侧形拓扑的基不变子波主动形状模型对锥形束 CT 成像中的上颌骨进行 3D 分割。

3D segmentation of maxilla in cone-beam computed tomography imaging using base invariant wavelet active shape model on customized two-manifold topology.

机构信息

Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.

出版信息

J Xray Sci Technol. 2013;21(2):251-82. doi: 10.3233/XST-130369.

Abstract

Recent advances in cone-beam computed tomography (CBCT) have rapidly enabled widepsread applications of dentomaxillofacial imaging and orthodontic practices in the past decades due to its low radiation dose, high spatial resolution, and accessibility. However, low contrast resolution in CBCT image has become its major limitation in building skull models. Intensive hand-segmentation is usually required to reconstruct the skull models. One of the regions affected by this limitation the most is the thin bone images. This paper presents a novel segmentation approach based on wavelet density model (WDM) for a particular interest in the outer surface of anterior wall of maxilla. Nineteen CBCT datasets are used to conduct two experiments. This mode-based segmentation approach is validated and compared with three different segmentation approaches. The results show that the performance of this model-based segmentation approach is better than those of the other approaches. It can achieve 0.25 ± 0.2 mm of surface error from ground truth of bone surface.

摘要

近年来,锥形束计算机断层扫描(CBCT)技术的进步由于其低辐射剂量、高空间分辨率和可及性,使得口腔颌面成像和正畸实践得到了广泛应用。然而,CBCT 图像的低对比度分辨率已成为其在构建颅骨模型方面的主要限制。通常需要进行密集的手动分割来重建颅骨模型。受此限制影响最大的区域之一是薄骨图像。本文提出了一种基于小波密度模型(WDM)的新分割方法,特别关注上颌骨前壁的外表面。使用了 19 个 CBCT 数据集来进行两项实验。验证并比较了这种基于模型的分割方法与三种不同的分割方法。结果表明,这种基于模型的分割方法的性能优于其他方法。它可以达到从骨表面的真实值中测量的 0.25±0.2mm 的表面误差。

相似文献

2
A level-set based approach for anterior teeth segmentation in cone beam computed tomography images.
Comput Biol Med. 2014 Jul;50:116-28. doi: 10.1016/j.compbiomed.2014.04.006. Epub 2014 May 1.
6
A novel image-based retrieval system for characterization of maxillofacial lesions in cone beam CT images.
Int J Comput Assist Radiol Surg. 2019 May;14(5):785-796. doi: 10.1007/s11548-019-01946-w. Epub 2019 Mar 14.
9
Artifact-resistant superimposition of digital dental models and cone-beam computed tomography images.
J Oral Maxillofac Surg. 2013 Nov;71(11):1933-47. doi: 10.1016/j.joms.2013.06.199. Epub 2013 Aug 1.

引用本文的文献

2
Novel Anterior Cranial Base Area for Voxel-Based Superimposition of Craniofacial CBCTs.
J Clin Med. 2022 Jun 20;11(12):3536. doi: 10.3390/jcm11123536.
5
Three-dimensional facial hard tissue symmetry in a healthy Caucasian population group: a systematic review.
Clin Oral Investig. 2021 Nov;25(11):6081-6092. doi: 10.1007/s00784-021-04126-w. Epub 2021 Aug 13.
6
3D morphometric quantification of maxillae and defects for patients with unilateral cleft palate via deep learning-based CBCT image auto-segmentation.
Orthod Craniofac Res. 2021 Dec;24 Suppl 2(Suppl 2):108-116. doi: 10.1111/ocr.12482. Epub 2021 Mar 25.
8
3D Segmentation Algorithms for Computerized Tomographic Imaging: a Systematic Literature Review.
J Digit Imaging. 2018 Dec;31(6):799-850. doi: 10.1007/s10278-018-0101-z.
9
Flexible methods for segmentation evaluation: results from CT-based luggage screening.
J Xray Sci Technol. 2014;22(2):175-95. doi: 10.3233/XST-140418.

本文引用的文献

1
Three-dimensional surgical simulation.
Am J Orthod Dentofacial Orthop. 2010 Sep;138(3):361-71. doi: 10.1016/j.ajodo.2009.08.026.
2
Essentials of maxillofacial cone beam computed tomography.
Alpha Omegan. 2010 Jun;103(2):62-7. doi: 10.1016/j.aodf.2010.04.001.
3
Comparison of actual surgical outcomes and 3-dimensional surgical simulations.
J Oral Maxillofac Surg. 2010 Oct;68(10):2412-21. doi: 10.1016/j.joms.2009.09.058. Epub 2010 Jun 29.
4
An automatic and robust algorithm of reestablishment of digital dental occlusion.
IEEE Trans Med Imaging. 2010 Sep;29(9):1652-63. doi: 10.1109/TMI.2010.2049526. Epub 2010 Jun 7.
5
Left ventricle segmentation using diffusion wavelets and boosting.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):919-26. doi: 10.1007/978-3-642-04271-3_111.
6
Automatic extraction of mandibular nerve and bone from cone-beam CT data.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):76-83. doi: 10.1007/978-3-642-04271-3_10.
7
Virtual occlusion in planning orthognathic surgical procedures.
Int J Oral Maxillofac Surg. 2010 May;39(5):457-62. doi: 10.1016/j.ijom.2010.02.002. Epub 2010 Mar 11.
8
Building 3-D statistical shape models by direct optimization.
IEEE Trans Med Imaging. 2010 Apr;29(4):961-81. doi: 10.1109/TMI.2009.2035048. Epub 2009 Nov 3.
9
Three-dimensional treatment planning of orthognathic surgery in the era of virtual imaging.
J Oral Maxillofac Surg. 2009 Oct;67(10):2080-92. doi: 10.1016/j.joms.2009.06.007.
10
Cone-beam CT: applications in orthodontics.
Dent Clin North Am. 2008 Oct;52(4):809-23, vii. doi: 10.1016/j.cden.2008.05.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验