Suppr超能文献

自组装神经丝网络中液晶与各向同性凝胶之间的相互作用。

Interplay between liquid crystalline and isotropic gels in self-assembled neurofilament networks.

作者信息

Jones Jayna B, Safinya Cyrus R

机构信息

Materials Department, University of California, Santa Barbara, California 93106, USA.

出版信息

Biophys J. 2008 Jul;95(2):823-35. doi: 10.1529/biophysj.107.127415.

Abstract

Neurofilaments (NFs) are a major constituent of nerve cell axons that assemble from three subunit proteins of low (NF-L), medium (NF-M), and high (NF-H) molecular weight into a 10 nm diameter rod with radiating sidearms to form a bottle-brush-like structure. Here, we reassemble NFs in vitro from varying weight ratios of the subunit proteins, purified from bovine spinal cord, to form homopolymers of NF-L or filaments composed of NF-L and NF-M (NF-LM), NF-L and NF-H (NF-LH), or all three subunits (NF-LMH). At high protein concentrations, NFs align to form a nematic liquid crystalline gel with a well-defined spacing determined with synchrotron small angle x-ray scattering. Near physiological conditions (86 mM monovalent salt and pH 6.8), NF-LM networks with a high NF-M grafting density favor nematic ordering whereas filaments composed of NF-LH transition to an isotropic gel at low protein concentrations as a function of increasing mole fraction of NF-H subunits. The interfilament distance decreases with NF-M grafting density, opposite the trend seen with NF-LH networks. This suggests a competition between the more attractive NF-M sidearms, forming a compact aligned nematic gel, and the repulsive NF-H sidearms, favoring a more expansive isotropic gel, at 86 mM monovalent salt. These interactions are highly salt dependent and the nematic gel phase is stabilized with increasing monovalent salt.

摘要

神经丝(NFs)是神经细胞轴突的主要组成部分,由低分子量(NF-L)、中等分子量(NF-M)和高分子量(NF-H)的三种亚基蛋白组装成直径为10 nm的杆状结构,并带有辐射状侧臂,形成类似瓶刷的结构。在此,我们从牛脊髓中纯化出不同重量比的亚基蛋白,在体外重新组装神经丝,以形成NF-L的同聚物或由NF-L和NF-M组成的丝状体(NF-LM)、NF-L和NF-H组成的丝状体(NF-LH)或所有三种亚基组成的丝状体(NF-LMH)。在高蛋白浓度下,神经丝排列形成向列型液晶凝胶,其间距通过同步加速器小角X射线散射确定。在接近生理条件(86 mM单价盐和pH 6.8)下,具有高NF-M接枝密度的NF-LM网络有利于向列有序排列,而由NF-LH组成的丝状体在低蛋白浓度下会转变为各向同性凝胶,这是NF-H亚基摩尔分数增加的函数。丝间距离随NF-M接枝密度的增加而减小,这与NF-LH网络的趋势相反。这表明在86 mM单价盐条件下,形成紧密排列向列凝胶的更具吸引力的NF-M侧臂与有利于形成更膨胀各向同性凝胶的排斥性NF-H侧臂之间存在竞争。这些相互作用高度依赖盐,并且向列凝胶相随着单价盐浓度的增加而稳定。

相似文献

1
Interplay between liquid crystalline and isotropic gels in self-assembled neurofilament networks.
Biophys J. 2008 Jul;95(2):823-35. doi: 10.1529/biophysj.107.127415.
2
Gel-expanded to gel-condensed transition in neurofilament networks revealed by direct force measurements.
Nat Mater. 2010 Jan;9(1):40-6. doi: 10.1038/nmat2566. Epub 2009 Nov 15.
3
Neurofilament networks: Salt-responsive hydrogels with sidearm-dependent phase behavior.
Biochim Biophys Acta. 2016 Jul;1860(7):1560-9. doi: 10.1016/j.bbagen.2016.03.018. Epub 2016 Mar 16.
5
Structural properties of neurofilament sidearms: sequence-based modeling of neurofilament architecture.
J Mol Biol. 2009 Aug 21;391(3):648-60. doi: 10.1016/j.jmb.2009.06.045. Epub 2009 Jun 24.
7
Antibody labeling of bovine neurofilaments: implications on the structure of neurofilament sidearms.
J Struct Biol. 1991 Apr;106(2):145-60. doi: 10.1016/1047-8477(91)90084-a.
8
Neurofilament spacing, phosphorylation, and axon diameter in regenerating and uninjured lamprey axons.
J Comp Neurol. 1996 May 13;368(4):569-81. doi: 10.1002/(SICI)1096-9861(19960513)368:4<569::AID-CNE8>3.0.CO;2-2.

引用本文的文献

1
Exploring the Role of Axons in ALS from Multiple Perspectives.
Cells. 2024 Dec 17;13(24):2076. doi: 10.3390/cells13242076.
2
Dissecting neurofilament tail sequence-phosphorylation-structure relationships with multicomponent reconstituted protein brushes.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2410109121. doi: 10.1073/pnas.2410109121. Epub 2024 Nov 27.
3
Neurofilaments as biomarkers in neurological disorders - towards clinical application.
Nat Rev Neurol. 2024 May;20(5):269-287. doi: 10.1038/s41582-024-00955-x. Epub 2024 Apr 12.
4
Neurofilament Biophysics: From Structure to Biomechanics.
Mol Biol Cell. 2024 May 1;35(5):re1. doi: 10.1091/mbc.E23-11-0438. Epub 2024 Apr 10.
5
The 2022 Lady Estelle Wolfson lectureship on neurofilaments.
J Neurochem. 2022 Nov;163(3):179-219. doi: 10.1111/jnc.15682. Epub 2022 Sep 19.
6
Micellar Lyotropic Nematic Gels.
Adv Mater. 2021 Feb;33(8):e2007340. doi: 10.1002/adma.202007340. Epub 2021 Jan 18.
8
Axonal neurofilaments exhibit frequent and complex folding behaviors.
Cytoskeleton (Hoboken). 2018 Jun;75(6):258-280. doi: 10.1002/cm.21448.
9
Phosphorylation-Induced Mechanical Regulation of Intrinsically Disordered Neurofilament Proteins.
Biophys J. 2017 Mar 14;112(5):892-900. doi: 10.1016/j.bpj.2016.12.050.
10
Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules.
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6416-25. doi: 10.1073/pnas.1513172112. Epub 2015 Nov 5.

本文引用的文献

1
A self-consistent field analysis of the neurofilament brush with amino-acid resolution.
Biophys J. 2007 Sep 1;93(5):1421-30. doi: 10.1529/biophysj.106.095323. Epub 2007 May 18.
2
Effect of the ionic strength and pH on the equilibrium structure of a neurofilament brush.
Biophys J. 2007 Sep 1;93(5):1452-63. doi: 10.1529/biophysj.107.104695. Epub 2007 May 18.
3
Interaction between colloids with grafted diblock polyampholytes.
J Chem Phys. 2007 Mar 21;126(11):114903. doi: 10.1063/1.2436874.
6
Symmetries and elasticity of nematic gels.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 1):011702. doi: 10.1103/PhysRevE.66.011702. Epub 2002 Jul 19.
9
Selective solubilization of high-molecular-mass neurofilament subunit during nerve regeneration.
J Neurochem. 2000 Feb;74(2):860-8. doi: 10.1046/j.1471-4159.2000.740860.x.
10
Characterization of distinct early assembly units of different intermediate filament proteins.
J Mol Biol. 1999 Mar 12;286(5):1403-20. doi: 10.1006/jmbi.1999.2528.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验