Suppr超能文献

聚乙二醇化双功能聚合物偶联物的对比增强MRI引导下的光动力癌症治疗

Contrast-enhanced MRI-guided photodynamic cancer therapy with a pegylated bifunctional polymer conjugate.

作者信息

Vaidya Anagha, Sun Yongen, Feng Yi, Emerson Lyska, Jeong Eun-Kee, Lu Zheng-Rong

机构信息

Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.

出版信息

Pharm Res. 2008 Sep;25(9):2002-11. doi: 10.1007/s11095-008-9608-1. Epub 2008 Jun 27.

Abstract

PURPOSE

To study contrast-enhanced MRI guided photodynamic therapy with a pegylated bifunctional polymer conjugate containing an MRI contrast agent and a photosensitizer for minimally invasive image-guided cancer treatment.

METHODS

Pegylated and non-pegylated poly-(L-glutamic acid) conjugates containing mesochlorin e6, a photosensitizer, and Gd(III)-DO3A, an MRI contrast agent, were synthesized. The effect of pegylation on the biodistribution and tumor targeting was non-invasively visualized in mice bearing MDA-MB-231 tumor xenografts with MRI. MRI-guided photodynamic therapy was carried out in the tumor bearing mice. Tumor response to photodynamic therapy was evaluated by dynamic contrast enhanced MRI and histological analysis.

RESULTS

The pegylated conjugate had longer blood circulation, lower liver uptake and higher tumor accumulation than the non-pegylated conjugate as shown by MRI. Site-directed laser irradiation of tumors resulted in higher therapeutic efficacy for the pegylated conjugate than the non-pegylated conjugate. Moreover, animals treated with photodynamic therapy showed reduced vascular permeability on DCE-MRI and decreased microvessel density in histological analysis.

CONCLUSIONS

Pegylation of the polymer bifunctional conjugates reduced non-specific liver uptake and increased tumor uptake, resulting in significant tumor contrast enhancement and high therapeutic efficacy. The pegylated poly(L-glutamic acid) bifunctional conjugate is promising for contrast enhanced MRI guided photodynamic therapy in cancer treatment.

摘要

目的

研究使用一种含有磁共振成像(MRI)造影剂和光敏剂的聚乙二醇化双功能聚合物偶联物进行MRI引导的光动力疗法,用于微创图像引导的癌症治疗。

方法

合成了含有光敏剂中氯卟啉e6和MRI造影剂钆(III)-DO3A的聚乙二醇化和非聚乙二醇化聚(L-谷氨酸)偶联物。在携带MDA-MB-231肿瘤异种移植的小鼠中,通过MRI无创可视化聚乙二醇化对生物分布和肿瘤靶向的影响。在荷瘤小鼠中进行MRI引导的光动力疗法。通过动态对比增强MRI和组织学分析评估肿瘤对光动力疗法的反应。

结果

MRI显示,聚乙二醇化偶联物比非聚乙二醇化偶联物具有更长的血液循环时间、更低的肝脏摄取和更高的肿瘤蓄积。对肿瘤进行定点激光照射时,聚乙二醇化偶联物比非聚乙二醇化偶联物具有更高的治疗效果。此外,接受光动力疗法治疗的动物在DCE-MRI上显示血管通透性降低,组织学分析显示微血管密度降低。

结论

聚合物双功能偶联物的聚乙二醇化降低了非特异性肝脏摄取并增加了肿瘤摄取,从而导致显著的肿瘤对比增强和高治疗效果。聚乙二醇化聚(L-谷氨酸)双功能偶联物在癌症治疗的对比增强MRI引导光动力疗法中具有应用前景。

相似文献

1
Contrast-enhanced MRI-guided photodynamic cancer therapy with a pegylated bifunctional polymer conjugate.
Pharm Res. 2008 Sep;25(9):2002-11. doi: 10.1007/s11095-008-9608-1. Epub 2008 Jun 27.
2
Contrast enhanced MRI-guided photodynamic therapy for site-specific cancer treatment.
Magn Reson Med. 2006 Oct;56(4):761-7. doi: 10.1002/mrm.21009.
6
Synthesis and evaluation of nanoglobular macrocyclic Mn(II) chelate conjugates as non-gadolinium(III) MRI contrast agents.
Bioconjug Chem. 2011 May 18;22(5):931-7. doi: 10.1021/bc100573t. Epub 2011 Apr 19.
8
Multifunctional nanoparticle PEG‑Ce6‑Gd for MRI‑guided photodynamic therapy.
Oncol Rep. 2021 Feb;45(2):547-556. doi: 10.3892/or.2020.7871. Epub 2020 Nov 27.
9
Comparative characterization of the cellular uptake and photodynamic efficiency of Foscan® and Fospeg in a human prostate cancer cell line.
Photodiagnosis Photodyn Ther. 2012 Dec;9(4):344-54. doi: 10.1016/j.pdpdt.2012.03.008. Epub 2012 May 3.
10
Vitamin Bc -Bearing Hydrophilic Photosensitizer Conjugate for Photodynamic Cancer Theranostics.
Macromol Biosci. 2015 Aug;15(8):1081-90. doi: 10.1002/mabi.201500060. Epub 2015 Mar 31.

引用本文的文献

2
An extracellular MRI polymeric contrast agent that degrades at physiological pH.
Mol Pharm. 2012 Jul 2;9(7):1911-8. doi: 10.1021/mp2005998. Epub 2012 Jun 13.
3
Strategies for the preparation of bifunctional gadolinium(III) chelators.
Curr Org Synth. 2011 Aug 1;8(4):535-565. doi: 10.2174/157017911796117250.
4
Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia.
J Control Release. 2011 Dec 20;156(3):276-80. doi: 10.1016/j.jconrel.2011.08.019. Epub 2011 Aug 23.
6
Development and applications of photo-triggered theranostic agents.
Adv Drug Deliv Rev. 2010 Aug 30;62(11):1094-124. doi: 10.1016/j.addr.2010.09.002. Epub 2010 Sep 19.
8
Polymeric nanomedicine for cancer MR imaging and drug delivery.
Chem Commun (Camb). 2009 Jun 28(24):3497-510. doi: 10.1039/b821865j. Epub 2009 Mar 10.

本文引用的文献

1
Photosensitizers in clinical PDT.
Photodiagnosis Photodyn Ther. 2004 May;1(1):27-42. doi: 10.1016/S1572-1000(04)00007-9.
2
Killer beacons for combined cancer imaging and therapy.
Curr Med Chem. 2007;14(20):2110-25. doi: 10.2174/092986707781389655.
4
Promise and progress for functional and molecular imaging of response to targeted therapies.
Pharm Res. 2007 Jun;24(6):1172-85. doi: 10.1007/s11095-007-9250-3. Epub 2007 Mar 24.
5
In vivo performance of a liposomal vascular contrast agent for CT and MR-based image guidance applications.
Pharm Res. 2007 Jun;24(6):1193-201. doi: 10.1007/s11095-006-9220-1. Epub 2007 Mar 21.
7
Contrast enhanced MRI-guided photodynamic therapy for site-specific cancer treatment.
Magn Reson Med. 2006 Oct;56(4):761-7. doi: 10.1002/mrm.21009.
9
A comparison of immunohistochemical stain quality in conventional and rapid microwave processed tissues.
Am J Clin Pathol. 2006 Feb;125(2):176-83. doi: 10.1309/GN6Q-CBML-LEAT-LK2M.
10
Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.
Int J Pharm. 2006 Jan 3;307(1):93-102. doi: 10.1016/j.ijpharm.2005.10.010. Epub 2005 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验