Ozturk S S, Palsson B O, Thiele J H
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA.
Biotechnol Bioeng. 1989 Feb 5;33(6):745-57. doi: 10.1002/bit.260330612.
Dynamic reaction diffusion models were used to analyze the consequences of aggregation for syntrophic reactions in methanogenic ecosystems. Flocs from a whey digestor were used to measure all model parameters under the in situ conditions of a particular defined biological system. Fermentation simulations without adjustable parameters could precisely predict the kinetics of H(2) gas production of digestor flocs during syntrophic methanogenesis from ethanol. The results demonstrated a kinetic compartmentalization of H(2) metabolism inside the flocs. The interspecies electron transfer reaction was mildly diffusion controlled. The H(2) gas profiles across the flocs showed high H (2) concentrations inside the flocs at any time. Simulations of the syntrophic metabolism at low substrate concentrations such as in digestors or sediments showed that it is impossible to achieve high H(2) gas turnovers at simultaneously low steady-state H(2) concentrations. This showed a mechanistic contradiction in the concept of postulated low H(2) microenvironments for the anaerobic digestion process. The results of the computer experiments support the conclusion that syntrophic H(2) production may only be a side reaction of H(2) independent interspecies electron transfer in methanogenic ecosystems.
动态反应扩散模型被用于分析聚集对产甲烷生态系统中互营反应的影响。利用来自乳清消化器的絮体在特定定义的生物系统原位条件下测量所有模型参数。在没有可调参数的情况下进行发酵模拟,可以精确预测在乙醇互营产甲烷过程中消化器絮体产生氢气的动力学。结果表明絮体内氢气代谢存在动力学分区。种间电子转移反应受轻度扩散控制。整个絮体的氢气浓度分布显示,在任何时候絮体内氢气浓度都很高。对低底物浓度(如消化器或沉积物中的浓度)下的互营代谢进行模拟表明,在低稳态氢气浓度下不可能实现高氢气周转率。这表明在厌氧消化过程中假定的低氢气微环境概念存在机制上的矛盾。计算机实验结果支持这样的结论:在产甲烷生态系统中,互营产氢可能只是与氢气无关的种间电子转移的副反应。