Suppr超能文献

基于黑腹果蝇对铜绿假单胞菌PA14多宿主毒力因子的筛选及一种毒力减弱因子HudA的鉴定。

Drosophila melanogaster-based screening for multihost virulence factors of Pseudomonas aeruginosa PA14 and identification of a virulence-attenuating factor, HudA.

作者信息

Kim Seol-Hee, Park Shin-Young, Heo Yun-Jeong, Cho You-Hee

机构信息

Department of Life Science, Sogang University, Seoul, Republic of Korea.

出版信息

Infect Immun. 2008 Sep;76(9):4152-62. doi: 10.1128/IAI.01637-07. Epub 2008 Jun 30.

Abstract

Pseudomonas aeruginosa is an important opportunistic human pathogen that interacts with phylogenetically diverse nonmammalian hosts, including plants, nematodes, and insects. Here, we exploited the P. aeruginosa-induced killing of the fruit fly Drosophila melanogaster as an assay system to screen for virulence-attenuated mutants of P. aeruginosa PA14. Fifteen nonredundant mutants were isolated from 4,018 random transposon (TnphoA) insertion clones, and 13 out of them (86.7%) displayed significantly reduced virulence in a murine peritonitis model as well. The TnphoA insertion sites of the 15 mutants were determined; already known virulence genes (dsbA, pvdI, fhlB, pilF, and wspF) and new virulence genes such as PA0253 (hudR), PA0369, PA2077, PA0272, PA2113, PA2965 (fabF1), and PA2002 were identified; one insertion was located at the intergenic region between PA1928 and PA1929; and the other two insertions were located in the genes (PA14_35740 and PA14_36000) within a putative genomic island, indicating a potential pathogenicity island of PA14. Further characterization of hudR, a virulence gene which encodes a MarR/SlyA family transcription factor, revealed that elevated expression of PA0254 (hudA [homologous to UbiD]) was necessary and sufficient for the virulence attenuation of the hudR mutant. The HudR protein repressed the hudAR operon by directly binding to its upstream promoter region. Collectively, these results validate the relevance of the D. melanogaster model for the high-throughput identification of new virulence factors involved in the multihost pathogenesis of P. aeruginosa.

摘要

铜绿假单胞菌是一种重要的人类机会致病菌,它能与包括植物、线虫和昆虫在内的系统发育上不同的非哺乳动物宿主相互作用。在此,我们利用铜绿假单胞菌诱导的果蝇黑腹果蝇死亡作为检测系统,来筛选铜绿假单胞菌PA14的毒力减弱突变体。从4018个随机转座子(TnphoA)插入克隆中分离出15个非冗余突变体,其中13个(86.7%)在小鼠腹膜炎模型中也表现出明显降低的毒力。确定了这15个突变体的TnphoA插入位点;鉴定出了已知的毒力基因(dsbA、pvdI、fhlB、pilF和wspF)以及新的毒力基因,如PA0253(hudR)、PA0369、PA2077、PA0272、PA2113、PA2965(fabF1)和PA2002;一个插入位于PA1928和PA1929之间的基因间隔区;另外两个插入位于一个假定基因组岛中的基因(PA14_35740和PA14_36000)中,表明PA14存在一个潜在的致病岛。对编码MarR/SlyA家族转录因子的毒力基因hudR的进一步表征表明,PA0254(hudA [与UbiD同源])的表达升高对于hudR突变体的毒力减弱是必要且充分的。HudR蛋白通过直接结合其上游启动子区域来抑制hudAR操纵子。总的来说,这些结果证实了果蝇模型对于高通量鉴定参与铜绿假单胞菌多宿主致病机制的新毒力因子的相关性。

相似文献

4
Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts.
Mol Microbiol. 2000 Sep;37(5):981-8. doi: 10.1046/j.1365-2958.2000.02056.x.
5
Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model.
PLoS Pathog. 2012;8(7):e1002813. doi: 10.1371/journal.ppat.1002813. Epub 2012 Jul 26.
7
Isolation and characterization of HepP: a virulence-related Pseudomonas aeruginosa heparinase.
BMC Microbiol. 2017 Dec 16;17(1):233. doi: 10.1186/s12866-017-1141-0.
10
Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors.
Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2408-13. doi: 10.1073/pnas.96.5.2408.

引用本文的文献

1
MyD88 knockdown by RNAi prevents bacterial stimulation of tubeworm metamorphosis.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2505805122. doi: 10.1073/pnas.2505805122. Epub 2025 Jun 2.
2
Development of a sensor for disulfide bond formation in diverse bacteria.
J Bacteriol. 2024 Apr 18;206(4):e0043323. doi: 10.1128/jb.00433-23. Epub 2024 Mar 13.
3
as an organism model for studying cystic fibrosis and its major associated microbial infections.
Infect Immun. 2023 Nov 16;91(11):e0024023. doi: 10.1128/iai.00240-23. Epub 2023 Oct 17.
4
Pathogen-associated gene discovery workflows for novel antivirulence therapeutic development.
EBioMedicine. 2023 Feb;88:104429. doi: 10.1016/j.ebiom.2022.104429. Epub 2023 Jan 9.
5
An iron-chelating sulfonamide identified from -based screening for antipathogenic discovery.
Virulence. 2022 Dec;13(1):833-843. doi: 10.1080/21505594.2022.2069325.
6
Identification of the Genes of the Plant Pathogen MB03 Required for the Nematicidal Activity Against Through an Integrated Approach.
Front Microbiol. 2022 Mar 9;13:826962. doi: 10.3389/fmicb.2022.826962. eCollection 2022.
7
A phage protein-derived antipathogenic peptide that targets type IV pilus assembly.
Virulence. 2021 Dec;12(1):1377-1387. doi: 10.1080/21505594.2021.1926411.
8
The MarR-Type Regulator PA3458 Is Involved in Osmoadaptation Control in .
Int J Mol Sci. 2021 Apr 12;22(8):3982. doi: 10.3390/ijms22083982.
9
Structure and Mechanism of PA0254/HudA, a prFMN-Dependent Pyrrole-2-carboxylic Acid Decarboxylase Linked to Virulence.
ACS Catal. 2021 Mar 5;11(5):2865-2878. doi: 10.1021/acscatal.0c05042. Epub 2021 Feb 17.
10
as a Model Organism in Host-Pathogen Interaction Studies.
Front Cell Infect Microbiol. 2020 Jun 23;10:214. doi: 10.3389/fcimb.2020.00214. eCollection 2020.

本文引用的文献

2
Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22.
Microbiology (Reading). 2007 Sep;153(Pt 9):2885-2895. doi: 10.1099/mic.0.2007/007260-0.
3
Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model.
PLoS Pathog. 2006 Jun;2(6):e56. doi: 10.1371/journal.ppat.0020056. Epub 2006 Jun 9.
4
Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients.
Proc Natl Acad Sci U S A. 2006 May 30;103(22):8487-92. doi: 10.1073/pnas.0602138103. Epub 2006 May 10.
5
An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants.
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2833-8. doi: 10.1073/pnas.0511100103. Epub 2006 Feb 13.
7
Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans.
Nature. 2005 Nov 10;438(7065):179-84. doi: 10.1038/nature04216.
10
KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14.
Infect Immun. 2005 Jul;73(7):4399-403. doi: 10.1128/IAI.73.7.4399-4403.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验