Langenbucher A, Viestenz Anja, Szentmáry N, Behrens-Baumann W, Viestenz A
Medizinische Optik am Institut für Medizinische Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland.
Ophthalmologe. 2008 Jul;105(7):685-92. doi: 10.1007/s00347-008-1791-2.
In the last decades, toric posterior chamber lenses (TPCLs) for cataract surgery and phakic toric lenses (PTLs) for refractive surgery have become more and more popular for correcting high or excessive corneal astigmatism. The purpose of this article is to present a vergence-based calculation scheme for TPCLs and PTLs.
In Gaussian optics (in the paraxial space), spherocylindrical optical surfaces can be described in a mathematically equivalent formulation as vergences. There are dual notations: The standard notation is used for transforming vergences through a homogeneous optical medium, and the component notation is applied to add up the power of a refractive surface to the vergence. Both notations can be used interchangeably. For calculating TPCLs, the vergences in front of and behind the predicted pseudophakic lens position are determined and subtracted. For calculating PTLs, the anterior vergence at the predicted lens position is estimated for the preoperative and postoperative states, and the difference between the two yields the desired lens power. WORKING EXAMPLES: In the 1(st) example, the power of a thin TPCL is determined step by step by applying the presented calculation scheme, which was designed to be transferred directly to a simple computer program (e.g., Microsoft Excel). In the 2(nd) example, the postoperative refraction is estimated for a simulation in which a TPCL similar to that in example 1 is implanted in a slightly misaligned orientation. In a 3(rd) example, the power of a PTL is determined step by step using the above-mentioned calculation scheme.
The presented calculation scheme allows determination of"thin" TPCLs or PTLs to achieve spherocylindrical target refraction with a cylinder axis at random or to predict the postoperative refraction for any toric lens implanted in any axis. The concept can be easily generalized to"thick" toric intraocular lenses if the geometric data and refraction index of the material are known.
在过去几十年中,用于白内障手术的复曲面后房型人工晶状体(TPCL)和用于屈光手术的有晶状体眼复曲面人工晶状体(PTL)在矫正高度或过大角膜散光方面越来越受欢迎。本文的目的是提出一种基于聚散度的TPCL和PTL计算方案。
在高斯光学(傍轴空间)中,球柱面光学表面可以用数学上等效的聚散度公式来描述。有两种对偶表示法:标准表示法用于通过均匀光学介质转换聚散度,分量表示法用于将折射面的屈光力加到聚散度上。两种表示法可互换使用。对于计算TPCL,确定并相减预测的人工晶状体位置前后的聚散度。对于计算PTL,估计术前和术后状态下预测晶状体位置的前聚散度,两者之差即为所需的晶状体屈光力。工作示例:在第一个示例中,通过应用所提出的计算方案逐步确定薄TPCL的屈光力,该方案设计为可直接转换为简单的计算机程序(例如Microsoft Excel)。在第二个示例中,对一个模拟进行术后屈光预测,在该模拟中,与示例1中类似的TPCL以稍微错位的方向植入。在第三个示例中,使用上述计算方案逐步确定PTL的屈光力。
所提出的计算方案允许确定“薄”TPCL或PTL,以实现柱镜轴随机的球柱面目标屈光,或预测植入任何轴向上的任何复曲面人工晶状体的术后屈光。如果已知材料的几何数据和折射率,该概念可轻松推广到“厚”复曲面人工晶状体。